×

Quartic spliens with minimal norms. (English) Zbl 1044.41008

If univariate even degree splines are used to interpolate mean values or derivatives in lieu of function values, they may be shown to minimise certain Sobolev semi-norms. This is the usual analogy to the well-known odd-degree natural splines that interpolate function values while minimising Sobolev semi-norms. In the special case of quartic splines, this paper studies generalisation of these minimisation properties and addresses in particular existence and uniqueness of the generated splines.

MSC:

41A15 Spline approximation
65D05 Numerical interpolation
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] Bjorck A.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.
[2] Boor C.: A Practical Guide to Splines. Springer, 1978. · Zbl 0406.41003
[3] Gould I. M.: On practical conditions for the existence and uniqueness of solutions to the general equality quadratic programming probem. Mathematical Programming 32 (1985) 90-99. · Zbl 0591.90068
[4] Kobza J.: Quartic interpolatory splines. Studia Univ. Babes-Bolyai, Math. (1996). · Zbl 1007.41007
[5] Kobza J.: Spline recurrences for quartic splines. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 34, Math. 63 (1995), 229-236. · Zbl 0854.41011
[6] Kobza J.: Local representation of quartic splines. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 36 (1997), 63-78. · Zbl 0958.41005
[7] Kobza J.: Splajny. Vydavatelství UP, Olomouc, 1993 (textbook in Czech),
[8] Kobza J.: Computing solutions of linear difference equations. Dept. Math. Anal. and Appl. Math., Fac. Sci., Palacki Univ., Olomouc, Preprint series 21, 1999; Proceedings SANM XIII, Nectiny 1999, 157-172.
[9] Kobza J., Ženčák P.: Some algorithms for quartic smoothing splines. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 36 (1997), 79-94. · Zbl 0958.41004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.