×

The geometry of Grauert tubes and complexification of symmetric spaces. (English) Zbl 1044.53039

If \(M\) is a real analytic Riemannian manifold, a Grauert domain is a neighborhood of \(M\) in the tangent bundle \(TM\) on which a complex structure can be defined in such a way that, for any geodesic \(\gamma \) of \(M\), the map \[ {\mathbb C} \rightarrow TM, \quad s+it \mapsto \bigl(\gamma (s),t\gamma'(s)\bigr), \] is holomorphic. If \(M=G/K\) is a Riemannian symmetric space of non compact type, the authors prove that the maximal Grauert domain is biholomorphic to the Akhiezer-Gindikin domain \(D\subset G^{\mathbb C}/K^{\mathbb C}\). This domain can be described as follows. Let \({\mathfrak g}={\mathfrak k}+{\mathfrak p}\) be the Cartan decomposition of \({\mathfrak g}=\text{Lie}(G)\), and let \({\mathfrak a}\subset {\mathfrak p}\) be a Cartan subspace. Then \[ D=G\exp (i\omega)\cdot o, \] where \(o=eK\) is the base point, and \[ \omega =\{H\in {\mathfrak a}\mid \forall \alpha \in \Sigma,\;| \alpha (H)| <\tfrac{\pi}{2}\}. \] For a rank one symmetric space, the maximal Grauert domain \(D\) is the Grauert tube of maximal radius. If the symmetric space \(M\) is Hermitian, then \(D\simeq M\times \overline M\). If \(M\) is a real form of a Hermitian symmetric space \(N\), then \(N\) is the maximal Grauert domain for \(M\) if and only if \(\text{ rank}(N)=2\text{ rank}(M)\). One says that the maximal Grauert domain \(D\) is rigid if \(\text{Aut}(D)\simeq \text{Isom}(M)\).
It is proved that either \(D\) is rigid or \(D\) is a Hermitian symmetric space. Further the authors prove that the maximal Grauert domain \(D\) is a Stein manifold. This has been conjectured by Akhiezer and Gindikin in 1990. The main step in the proof is to establish a bijection between \(G\)-invariant strictly pluriharmonic functions on \(D\) and \(W\)-invariant strictly convex functions on \(\omega \) (\(W\) is the Weyl group of the root system \(\Sigma \)). This fact was already known in the case of a compact symmetric space (Azod-Loeb, Lassalle).

MSC:

53C35 Differential geometry of symmetric spaces
32M15 Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects)
32Q28 Stein manifolds
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] D. N. Akhiezer and S. G. Gindikin, On Stein extensions of real symmetric spaces , Math. Ann. 286 (1990), 1–12. · Zbl 0681.32022
[2] A. Ash, D. Mumford, M. Rapoport, and Y. Tai, “Smooth compactification of locally symmetric varieties” in Lie Groups: History, Frontiers and Applications, Vol. IV , Math. Sci., Brookline, Mass., 1975. · Zbl 0334.14007
[3] H. Azad and J.-J. Loeb, Plurisubharmonic functions and Kählerian metrics on complexification of symmetric spaces , Indag. Math. (N.S.) 3 (1992), 365–375. · Zbl 0777.32008
[4] L. Barchini, Stein extensions of real symmetric spaces and the geometry of the flag manifold , preprint, 2001. · Zbl 1029.22011
[5] A. Borel, Compact Clifford-Klein forms of symmetric spaces , Topology 2 (1963), 111–122. · Zbl 0116.38603
[6] D. Burns, “On the uniqueness and characterization of Grauert tubes” in Complex Analysis and Geometry (Trento, Italy, 1993) , Lecture Notes in Pure and Appl. Math. 173 , Dekker, New York, 1996, 119–133. · Zbl 0921.32006
[7] D. Burns and R. Hind, Symplectic geometry and the uniqueness of Grauert tubes , Geom. Funct. Anal. 11 (2001), 1–10. · Zbl 0980.32013
[8] S. Gindikin and B. Krötz, Invariant Stein domains in Stein symmetric spaces and a nonlinear complex convexity theorem , Internat. Math. Res. Notices 2002 , no. 18, 959–971. · Zbl 1011.32018
[9] S. Gindikin and T. Matsuki, Stein extensions of Riemann symmetric spaces and dualities of orbits on flag manifolds , Mathematical Sciences Research Institute preprint number 2001-028, · Zbl 1043.22007
[10] V. Guillemin and M. Stenzel, Grauert tubes and the homogeneous Monge-Ampère equation , J. Differential Geom. 34 (1991), 561–570. · Zbl 0746.32005
[11] S. Halverscheid, Maximal domains of definition of adapted complex structures for symmetric spaces of non-compact type , thesis, Ruhr-Universität Bochum, Bochum, Germany, 2001. · Zbl 0985.32010
[12] Harish-Chandra, Spherical functions on a semisimple Lie group, I , Amer. J. Math. 80 (1958), 241–310. JSTOR: · Zbl 0093.12801
[13] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces , Pure Appl. Math. 80 , Academic Press, New York, 1978. · Zbl 0451.53038
[14] ——–, Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions , Pure Appl. Math. 113 , Academic Press, Orlando, Fla., 1984. · Zbl 0543.58001
[15] A. Huckleberry, On certain domains in cycle spaces of flag manifolds , Math. Ann. 323 (2002), 797–810. · Zbl 1026.32045
[16] A. Huckleberry and J. A. Wolf, Schubert varieties and cycle spaces , · Zbl 1048.32005
[17] H. A. Jaffee, Real forms of hermitian symmetric spaces , Bull. Amer. Math. Soc. 81 (1975), 456–458. · Zbl 0312.32018
[18] –. –. –. –., Anti-holomorphic automorphisms of the exceptional symmetric domains , J. Differential Geom. 13 (1978), 79–86. · Zbl 0413.53034
[19] S.-J. Kan, On the characterization of Grauert tubes covered by the ball , Math. Ann. 309 (1997), 71–80. · Zbl 0892.32011
[20] –. –. –. –., On the rigidity of non-positively curved Grauert tubes , Math. Z. 229 (1998), 349–363. · Zbl 0920.32009
[21] S.-J. Kan and D. Ma, On the rigidity of Grauert tubes over locally symmetric spaces , J. Reine Angew. Math. 524 (2000), 205–225. · Zbl 0959.32033
[22] –. –. –. –., On the rigidity of Grauert tubes over Riemannian manifolds of constant curvature , Math. Z. 239 (2002), 353–363. \CMP1 888 229 · Zbl 1010.32007
[23] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings , Pure Appl. Math. 2 , Dekker, New York, 1970. · Zbl 0207.37902
[24] B. Krötz and R. Stanton, Holomorphic extensions of representations, II: Geometry and harmonic analysis , preprint, 2001, · Zbl 1078.22009
[25] M. Lassalle, Séries de Laurent des fonctions holomorphes dans la complexification d’un espace symétrique compact , Ann. Sci. École Norm. Sup. (4) 11 (1978), 167–210. · Zbl 0452.43011
[26] L. Lempert and R. Szőke, Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds , Math. Ann. 290 (1991), 689–712. · Zbl 0752.32008
[27] K.-H. Neeb, On the complex geometry of invariant domains in complexified symmetric spaces , Ann. Inst. Fourier (Grenoble) 49 (1999), 177–225. · Zbl 0921.22003
[28] G. Patrizio and P.-M. Wong, Stein manifolds with compact symmetric center , Math. Ann. 289 (1991), 355–382. · Zbl 0729.32003
[29] H. L. Royden, “Remarks on the Kobayashi metric” in Several Complex Variables, II (College Park, Md., 1970) , Lecture Notes in Math. 185 , Springer, Berlin, 1971.. Mathematical Reviews (MathSciNet):
[30] G. Schwarz, Smooth functions invariant under the action of a compact Lie group , Topology 14 (1975), 63–68. · Zbl 0297.57015
[31] N. Sibony, “A class of hyperbolic manifolds” in Recent Developments in Several Complex Variables (Princeton, 1979) , Ann. of Math. Stud. 100 , Princeton Univ. Press, Princeton, 1981, 357–372. JSTOR: · Zbl 0476.32033
[32] K. Stein, Überlagerungen holomorph-vollständiger komplexer Räume , Arch. Math. 7 (1956), 354–361. · Zbl 0072.08002
[33] R. Szőke, Complex structures on tangent bundles of Riemannian manifolds , Math. Ann. 291 (1991), 409–428. · Zbl 0749.53021
[34] –. –. –. –., Automorphisms of certain Stein manifolds , Math. Z. 219 (1995), 357–385. · Zbl 0829.32009
[35] J. A. Wolf, “Fine structure of Hermitian symmetric spaces” in Symmetric Spaces (St. Louis, 1969–1970.) , Pure Appl. Math. 8 , Dekker, New York, 1972, 271–357. · Zbl 0257.32014
[36] –. –. –. –., Exhaustion functions and cohomology vanishing theorems for open orbits on complex flag manifolds , Math. Res. Lett. 2 (1995), 179–191. · Zbl 0856.22007
[37] –. –. –. –., “Complex geometry and representations of Lie groups” in Global Differential Geometry: The Mathematical Legacy of Alfred Gray (Bilbao, Spain, 2000) , Contemp. Math. 288 , Amer. Math. Soc., Providence, 2001, 202–238. · Zbl 1001.22005
[38] J. A. Wolf and R. Zierau, Linear cycle spaces in flag domains , Math. Ann. 316 (2000), 529–545. · Zbl 0963.32015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.