Ruin probability with claims modeled by a stationary ergodic stable process. (English) Zbl 1044.60028

Summary: For a random walk with negative drift we study the exceedance probability (ruin probability) of a high threshold. The steps of this walk (claim sizes) constitute a stationary ergodic stable process. We study how ruin occurs in this situation and evaluate the asymptotic behavior of the ruin probability for a large variety of stationary ergodic stable processes. Our findings show that the order of magnitude of the ruin probability varies significantly from one model to another. In particular, ruin becomes much more likely when the claim sizes exhibit long-range dependence. The proofs exploit large deviation techniques for sums of dependent stable random variables and the series representation of a stable process as a function of a Poisson process.


60G10 Stationary stochastic processes
60G52 Stable stochastic processes
91B30 Risk theory, insurance (MSC2010)
60E07 Infinitely divisible distributions; stable distributions
60K30 Applications of queueing theory (congestion, allocation, storage, traffic, etc.)
Full Text: DOI


[1] Asmussen, S., Schmidli, H. and Schmidt, V. (1999). Tail probabilities for non-standard risk and queueing processes with subexponential jumps. Adv. Appl. Probab. 31 422-447. · Zbl 0942.60033 · doi:10.1239/aap/1029955142
[2] Baccelli, F. and Brémaud, P. (1994). Elements of Queueing Theory. Palm-Martingale Calculus and Stochastic Recurrences. Springer, Berlin. · Zbl 0801.60081
[3] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. · Zbl 0172.21201
[4] Bingham, N., Goldie, C. and Teugels, J. (1987). Regular Variation. Cambridge Univ. Press. · Zbl 0617.26001
[5] Braverman, M., Mikosch, T. and G. Samorodnitsky (2000). The tail behaviour of subadditive functionals acting on Lévy processes. Preprint available as levy.ps from http://www.math.rug.nl/ mikosch/Connie. URL:
[6] Crovella, M. and Bestavros, A. (1995). Explaining world wide web traffic self-similarity. Preprint available as TR-95-015 from crovella,best cs.bu.edu.
[7] Embrechts, P., Kl üppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance. Springer, Berlin. · Zbl 0873.62116
[8] Embrechts, P. and Veraverbeke, N. (1982). Estimates for the probability of ruin with special emphasis on the possibility of large claims. Insurance: Mathematics and Economics 1 55-72. · Zbl 0518.62083 · doi:10.1016/0167-6687(82)90021-X
[9] Goldie, C. (1991). Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1 126-166. · Zbl 0724.60076 · doi:10.1214/aoap/1177005985
[10] Gross, A. (1994). Some mixing conditions for stationary symmetric stable stochastic processes. Stochastic Process. Appl. 51 277-295. · Zbl 0813.60039 · doi:10.1016/0304-4149(94)90046-9
[11] Kallenberg, O. (1983). RandomMeasures, 3rd. ed. Akademie, Berlin.
[12] Kasahara, Y., Maejima, M. and Vervaat, W. (1988). Log-fractional stable processes. Stochastic Process. Appl. 30 329-339. · Zbl 0713.60049 · doi:10.1016/0304-4149(88)90093-2
[13] Maejima, M. (1983). A self-similar process with nowhere bounded sample paths.Wahrsch. Verw. Gebiete 65 115-119. · Zbl 0506.60047 · doi:10.1007/BF00534998
[14] Maruyama, G. (1970). Infinitely divisible processes. Theory Probab. Appl. 15 1-22. · Zbl 0268.60036
[15] Mikosch, T. and Samorodnitsky, G. (2000). The supremum of a negative drift random walk with dependent heavy-tailed steps. Ann. Appl. Probab. 10 1025-1064. · Zbl 1083.60506 · doi:10.1214/aoap/1019487517
[16] Mittnik, S. and Rachev, S. (1993). Modeling asset returns with alternative stable distributions (with discussion). Econom. Rev. 12 261-389. · Zbl 0801.62096 · doi:10.1080/07474939308800266
[17] Rajput, B. and Rosi ński, J. (1989). Spectral representations of infinitely divisible processes. Probab. Theory Related Fields 82 451-488. · Zbl 0659.60078 · doi:10.1007/BF00339998
[18] Resnick, S. (1997). Discussion of the Danish data on large fire insurance losses. ASTIN Bull. 27 139-151.
[19] Resnick, S., Samorodnitsky, G. and Xue, F. (2000). Growth rates of sample covariances of stationary symmetric -stable processes associated with null recurrent Markov chains. Stochastic Process. Appl. 85 321-339. · Zbl 0995.62083 · doi:10.1016/S0304-4149(99)00081-2
[20] Rosi ński, J. (1986). On stochastic integral representation of stable processes with sample paths in Banach spaces. J. Multivariate Anal. 20 277-302. · Zbl 0606.60041 · doi:10.1016/0047-259X(86)90084-9
[21] Rosi ński, J. (1995). On the structure of stationary stable processes. Ann. Probab. 23 1163- 1187. · Zbl 0836.60038 · doi:10.1214/aop/1176988178
[22] Rosi ński, J. and Samorodnitsky, G. (1993). Distributions of subadditive functionals of sample paths of infinitely divisible processes. Ann. Probab. 21 996-1014. · Zbl 0776.60049 · doi:10.1214/aop/1176989279
[23] Rosi ński, J. and Samorodnitsky, G. (1996). Classes of mixing stable processes. Bernoulli 2 3655-378. · Zbl 0870.60032 · doi:10.2307/3318419
[24] Samorodnitsky, G. and Taqqu, M. (1990). 1/ -self-similar processes with stationary increments. J. Multivariate Anal. 35 308-313. · Zbl 0721.60047 · doi:10.1016/0047-259X(90)90031-C
[25] Samorodnitsky, G. and Taqqu, M. (1994). Stable Non-Gaussian RandomProcesses. Chapman and Hall, New York. · Zbl 0925.60027
[26] Surgailis, D., Rosi ński, J., Mandrekar, V. and Cambanis, S. (1993). Stable mixed moving averages. Probab. Theory Related Fields 97 543-558. · Zbl 0794.60026 · doi:10.1007/BF01192963
[27] Taqqu, M. (1988). Self-similar processes. In Encyclopedia of Statistical Sciences 8 (S. Kotz and N. Johnson, eds.) 352-257. Wiley, New York.
[28] Taqqu, M. and Wolpert, R. (1983). Infinite variance self-similar processes subordinate to a Poisson measure.Wahrsch. Verw. Gebiete 62 53-72. · Zbl 0488.60066 · doi:10.1007/BF00532163
[29] Teicher, H. (1979). Rapidly growing random walks and an associated stopping time. Ann. Probab. 7 1078-1081. · Zbl 0424.60024 · doi:10.1214/aop/1176994903
[30] Vervaat, W. (1985). Sample paths of self-similar processes with stationary increments. Ann. Probab. 13 1-27. · Zbl 0555.60025 · doi:10.1214/aop/1176993063
[31] Willinger, W., Taqqu, M., Leland, M. and Wilson, D. (1995). Self-similarity through high variability: statistical analysis of ethernet LAN traffic at the source level. Comput. Comm. Rev. 25 100-113.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.