A Ray-Knight theorem for symmetric Markov processes. (English) Zbl 1044.60064

Summary: Let \(X\) be a strongly symmetric recurrent Markov process with state space \(S\) and let \(L^x_t\) denote the local time of \(X\) at \(x\in S\). For a fixed element 0 in the state space \(S\), let \(\tau(t):= \inf\{s:L^0_s>t\}.\) The 0-potential density, \(u_{\{0\}}(x,y)\), of the process \(X\) killed at \(T_0=\inf \{s: X_s=0\}\), is symmetric and positive definite. Let \(\eta=\{\eta_x;x\in S\}\) be a mean-zero Gaussian process with covariance \(E_\eta(\eta_x\eta_y)= u_{\{0\}} (x,y).\) The main result of this paper is the following generalization of the classical second Ray-Knight theorem: for any \(b\in R\) and \(t>0\), \[ \bigl\{ L^x_{ \tau (t)}+\tfrac 12(\eta_x+b)^2;x\in S\bigr\}=\bigl\{\tfrac 12(\eta_x+\sqrt {2t+b^2})^2;\;x\in S\bigr\}\text{ in law}. \] A version of this theorem is also given when \(X\) is transient.


60J55 Local time and additive functionals
60J25 Continuous-time Markov processes on general state spaces
Full Text: DOI


[1] Bass, R., Eisenbaum, N. and Shi,(2000). The most visited sites of symmetric stable processes. Probab. Theory Related Fields 116 391-404. · Zbl 0955.60073
[2] Bertoin, J. (1996). Lévy Processes. Cambridge Univ. Press. · Zbl 0861.60003
[3] Dynkin E. B. (1983). Local times and quantum fields. In Seminar on Stochastic Processes 1982 (E. Çinlar, K. L. Chung and R. K. Getoor, eds.) 69-84. Birkhäuser, Boston.
[4] Eisenbaum, N. (1994). Dynkin’s isomorphism theorem and the Ray-Knight theorems. Probab. Theory Related Fields 99 321-335. · Zbl 0801.60064
[5] Eisenbaum, N. (1997). Théor emes limites pour les temps locaux d’un processus stable symétrique. Séminaire de Probabilités XXXI. Lecture Notes in Math. 1655 216- 224. Springer, Berlin. (Errata: Séminaire de Probabilités XXXIII. Lecture Notes in Math.1709 417). · Zbl 0882.60076
[6] Eisenbaum, N. and Kaspi, H. (1993). A necessary and sufficient condition for the Markov property of the local time process. Ann. Probab. 21 1591-1598. · Zbl 0788.60091
[7] Fitzsimmons, P. and Pitman, J. H. (1999). Kac’s moment formula and the Feyman-Kac formula for additive functionals of a Markov process. Stochastic Process Appl. 79 117-134. · Zbl 0962.60067
[8] Marcus, M. B. (2000). The most visited sites of certain Lévy processes. J. Theoret. Probab.
[9] Marcus, M. B. and Rosen, J. (1992). Sample path properties of the local times of strongly symmetric Markovprocesses via Gaussian processes. Ann. Probab. 20 1603-1684. · Zbl 0762.60068
[10] Marcus, M. B. and Rosen, J. (1996). Gaussian chaos and sample path properties of additive functionals of symmetric Markovprocesses Ann. Probab. 24 1130-1177. · Zbl 0862.60065
[11] Marcus, M. B. and Rosen J. (2000). Gaussian processes and the local times of symmetric Lévy processes. In Lévy Processes and Their Applications (O. Barnsdorff-Nielsen, T. Mikosch and S. Resnick, eds.) Birkhauser, Boston.
[12] Mitro, J. B. (1979). Dual Markovfunctionals: applications of a useful auxiliary process.Wahrsch. Verw. Gebiete 48 976-114. · Zbl 0406.60068
[13] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd ed. Springer, Berlin. · Zbl 0917.60006
[14] Walsh, J. B. (1972). Markovprocesses and their functionals in duality.Wahrsch. Verw. Gebiete 24 229-246. · Zbl 0248.60054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.