zbMATH — the first resource for mathematics

Monotonicity of conditional distributions and growth models on trees. (English) Zbl 1044.60094
Summary: We consider a sequence of probability measures \(\nu_n\) obtained by conditioning a random vector \(X=(X_1,\dots,X_d)\) with nonnegative integer valued components on \(X_1+\cdots+X_d=n-1\) and give several sufficient conditions on the distribution of \(X\) for \(\nu_n\) to be stochastically increasing in \(n\). The problem is motivated by an interacting particle system on the homogeneous tree in which each vertex has \(d+1\) neighbors. This system is a variant of the contact process and was studied recently by A. Puha. She showed that the critical value for this process is \(1/4\) if \(d=2\) and gave a conjectured expression for the critical value for all \(d\). Our results confirm her conjecture, by showing that certain \(\nu_n\)’s defined in terms of \(d\)-ary Catalan numbers are stochastically increasing in \(n\). The proof uses certain combinatorial identities satisfied by the \(d\)-ary Catalan numbers.

60K35 Interacting random processes; statistical mechanics type models; percolation theory
Full Text: DOI
[1] Efron, B. (1965). Increasing properties of Pólya frequency functions. Ann. Math. Statist. 36 272-279. · Zbl 0134.36704 · doi:10.1214/aoms/1177700288
[2] F ürlinger, J. and Hofbauer, J. (1985). q-Catalan numbers. J. Combin. Theory Ser. A 40 248-264. · Zbl 0581.05006 · doi:10.1016/0097-3165(85)90089-5
[3] Hilton, P. and Pedersen, J. (1991). Catalan numbers, their generalization and their uses. Math. Intelligencer 13 64-75. · Zbl 0767.05010 · doi:10.1007/BF03024089
[4] Holley, R. (1974). Remarks on the FKG inequalities. Comm. Math. Phys. 36 227-231. · doi:10.1007/BF01645980
[5] Joag-Dev, K. and Proschan, F. (1983). Negative association of random variables with applications. Ann. Statist. 11 286-295. · Zbl 0508.62041 · doi:10.1214/aos/1176346079
[6] Karlin, S. and Rinott, Y. (1980). Classes of orderings of measures and related correlation inequalities I: multivariate totally positive distributions. J. Multivariate Anal. 10 467- 498. · Zbl 0469.60006 · doi:10.1016/0047-259X(80)90065-2
[7] Kipnis, C. and Landim, C. (1999). Scaling Limits of Interacting Particle Systems. Springer, Berlin. · Zbl 0927.60002
[8] Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York. · Zbl 0559.60078
[9] Liggett, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin. · Zbl 0949.60006
[10] Pemantle, R. (2000). Towards a theory of negative dependence. Unpublished manuscript. · Zbl 1052.62518 · doi:10.1063/1.533200
[11] Preston, C. J. (1974). A generalization of the FKG inequalities. Comm. Math. Phys. 36 233-241. · doi:10.1007/BF01645981
[12] Puha, A. L. (1999). A reversible nearest particle system on the homogeneous tree. J. Theoret. Probab. 12 217-254. · Zbl 0922.60086 · doi:10.1023/A:1021709013569
[13] Puha, A. L. (2000). Critical exponents for a reversible nearest particle system on the binary tree. Ann. Probab. 28 395-415. · Zbl 1044.60097 · doi:10.1214/aop/1019160124 · euclid:aop/1019160124
[14] Shaked, M. and Shanthikumar, J. G. (1994). Stochastic Orders and Their Applications. Academic Press, New York. · Zbl 0806.62009
[15] Spitzer, F. (1970). Interaction of Markov processes. Adv. Math. 5 246-290. · Zbl 0312.60060 · doi:10.1016/0001-8708(70)90034-4
[16] Tretyakov, A. Y. and Konno, N. (2000). Survival probability for uniform model on binary tree: Critical behavior and scaling. In Soft Computing in Industrial Applications. Springer, New York.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.