×

Asymptotic completeness in quantum field theory. Massive Pauli-Fierz Hamiltonians. (English) Zbl 1044.81556

Summary: Spectral and scattering theory of massive Pauli-Fierz Hamiltonians is studied. Asymptotic completeness of these Hamiltonians is shown. The proof consists of three parts. The first is a construction of asymptotic fields and a proof of their Fock property. The second part is a geometric analysis of observables. Its main result is what we call geometric asymptotic completeness. Finally, the last part is a proof of asymptotic completeness itself.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81T08 Constructive quantum field theory
47N50 Applications of operator theory in the physical sciences
81T10 Model quantum field theories
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1063/1.524830 · Zbl 0473.46050 · doi:10.1063/1.524830
[2] DOI: 10.1063/1.524921 · Zbl 0468.47030 · doi:10.1063/1.524921
[3] DOI: 10.1007/BF01625781 · doi:10.1007/BF01625781
[4] DOI: 10.1007/BF01645376 · doi:10.1007/BF01645376
[5] DOI: 10.1016/0003-4916(79)90299-9 · doi:10.1016/0003-4916(79)90299-9
[6] DOI: 10.1007/BF01608389 · Zbl 0294.60080 · doi:10.1007/BF01608389
[7] DOI: 10.1007/BF01351898 · Zbl 0323.60061 · doi:10.1007/BF01351898
[8] DOI: 10.2307/2946615 · Zbl 0844.47005 · doi:10.2307/2946615
[9] DOI: 10.1002/prop.19740220304 · doi:10.1002/prop.19740220304
[10] Fröhlich J., Ann. Inst. Henri Poincaré 19 pp 1– (1973)
[11] DOI: 10.1215/S0012-7094-82-04947-X · Zbl 0514.35025 · doi:10.1215/S0012-7094-82-04947-X
[12] DOI: 10.1142/S0129055X96000184 · Zbl 0858.47040 · doi:10.1142/S0129055X96000184
[13] DOI: 10.2307/1970582 · Zbl 0191.27005 · doi:10.2307/1970582
[14] DOI: 10.1007/BF02278000 · Zbl 0726.35096 · doi:10.1007/BF02278000
[15] DOI: 10.1007/3-540-51783-9_19 · doi:10.1007/3-540-51783-9_19
[16] DOI: 10.1063/1.1664548 · doi:10.1063/1.1664548
[17] DOI: 10.1007/BF01661576 · doi:10.1007/BF01661576
[18] DOI: 10.1007/BF01646090 · doi:10.1007/BF01646090
[19] DOI: 10.1142/S0129055X95000165 · Zbl 0843.35068 · doi:10.1142/S0129055X95000165
[20] Hübner M., Ann. Inst. H. Poincaré 62 pp 289– (1995)
[21] DOI: 10.1007/BF01209016 · doi:10.1007/BF01209016
[22] Jaksic V., Commun. Math. Phys. 176 pp 176– (1995)
[23] DOI: 10.1007/BF01770357 · Zbl 0599.60096 · doi:10.1007/BF01770357
[24] DOI: 10.1007/BF01942331 · Zbl 0489.47010 · doi:10.1007/BF01942331
[25] DOI: 10.1063/1.1704225 · doi:10.1063/1.1704225
[26] Okamoto T., Ann. Inst. H. Poincaré 42 pp 311– (1985)
[27] DOI: 10.1007/BF02958939 · JFM 64.1487.01 · doi:10.1007/BF02958939
[28] Reed M., I and pp 1979– (1976)
[29] DOI: 10.2307/1971345 · Zbl 0646.47009 · doi:10.2307/1971345
[30] DOI: 10.1007/BF01238859 · Zbl 0667.60108 · doi:10.1007/BF01238859
[31] DOI: 10.1007/BF02102107 · Zbl 0781.35048 · doi:10.1007/BF02102107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.