zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fuzzy linear programming using a penalty method. (English) Zbl 1044.90532
Summary: In this paper we begin with a standard form of the linear programming problem. We replace each constant in the problem with a fuzzy number. We then reformat the objective and constraints into an unconstrained fuzzy function by penalizing the objective for possible constraint violations. The range of this fuzzy function lies in the space of fuzzy numbers. The objective is then redefined as optimizing the expected midpoint of the image of this fuzzy function. We show that this objective defines a concave function which, therefore, can be maximized globally. We present an algorithm for finding the optimum.

MSC:
90C70Fuzzy programming
90C08Special problems of linear programming
WorldCat.org
Full Text: DOI
References:
[1] Buckley, J. J.: Possibilistic linear programming with triangular fuzzy numbers. Fuzzy sets and systems 26, 135-138 (1988) · Zbl 0788.90076
[2] Buckley, J. J.: Joint solution to fuzzy programming problems. Fuzzy sets and systems 72, 215-220 (1995) · Zbl 0845.90127
[3] J.M. Cadenas, J.L. Verdegay, Using fuzzy numbers in linear programming, IEEE Trans. Systems Man Cybernetics Part B: Cybernetics 27 (December 1997) 1016--1022.
[4] Delgado, M.; Verdegay, J. L.; Vila, M. A.: A general model for fuzzy linear programming. Fuzzy sets and systems 29, 21-29 (1989) · Zbl 0662.90049
[5] Fuller, R.: On fuzzified linear programming problems. Ann. univ. Sci. Budapest sectio computatorica 9, 115-120 (1988) · Zbl 0714.90099
[6] R. Fuller, On a special type of FLP, in: D. Greenspan, P. Rozsa (Eds.), Colloquia mathematica societatis Janos Bolyai 50. Numerical methods (Miskolc, 1986), North-Holland, Amsterdam, 1988, pp. 511--520.
[7] K.D. Jamison, Possibilities as cumulative subjective probabilities and a norm on the space of congruence classes of fuzzy numbers motivated by an expected utility functional, Fuzzy Sets and Systems, accepted. · Zbl 1039.26013
[8] Jamison, K. D.; Lodwick, W. A.: Minimizing unconstrained fuzzy functions. Fuzzy sets and systems 103, 457-464 (1999) · Zbl 0953.26010
[9] Julien, B.: An extension to possibilistic linear programming. Fuzzy sets and systems 64, 195-206 (1994)
[10] Jung, C. Y.; Pulmano, V. A.: Improved fuzzy linear programming model for structure designs. Comput. struct. 58, 471-477 (1996) · Zbl 0900.73506
[11] Inuiguchi, M.; Sakawa, M.: Possible and necessary optimality tests in possibilistic linear programming problems. Fuzzy sets and systems 67, 29-46 (1994) · Zbl 0844.90110
[12] Kaufmann, K.; Gupta, M. M.: Introduction to fuzzy arithmetic theory and applications. (1991) · Zbl 0754.26012
[13] Klir, G. J.; Yuan, B.: Fuzzy sets and fuzzy logic theory and applications. (1995) · Zbl 0915.03001
[14] Kruse, B.; Gebhardt, J.; Klawonn, F.: Foundations of fuzzy systems. (1994) · Zbl 0843.68109
[15] Lodwick, W. A.: Analysis of structure in fuzzy linear programming. Fuzzy sets and systems 38, 15-26 (1990) · Zbl 0777.90082
[16] W.A. Lodwick, K.D. Jamison, A computational method for fuzzy optimization, in: Uncertainty Analysis in Engineering and Sciences: Fuzzy Logic, Statistics, and Neural Network Approaches, Kluwer, Dordrecht, 1997. · Zbl 0887.90178
[17] Lodwick, W. A.; Jamison, K. D.: Interval methods and fuzzy optimization. Int. J. Uncertainty fuzziness knowledge-based systems 5, 239-249 (1997) · Zbl 1232.90353
[18] Luenberger, D. G.: Introduction to linear and nonlinear programming. (1972)
[19] Rommelfanger, H.: Fuzzy linear programming and applications. European J. Oper. res. 92, 512-527 (1996) · Zbl 0914.90265