×

Synchronization of uncertain chaotic systems via backstepping approach. (English) Zbl 1045.37011

Summary: Adaptive synchronization of two uncertain chaotic systems is presented using adaptive backstepping approach. The master system is any smooth nonlinear chaotic system, while the slave system is a nonlinear chaotic system in the feedback form. Global stability and exponential synchronization between the master and slave systems can be achieved. The proposed approach offers a systematic design procedure for adaptive synchronization of a large class of continuous-time chaotic systems in the chaos research literature. Computer simulations are provided to verify the operation of the designed synchronization scheme.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
93D15 Stabilization of systems by feedback
37N35 Dynamical systems in control
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Caroll, T. L.; Pecora, L. M., Synchronizing chaotic circuits, IEEE Trans. Circ. Syst. I, 38, 453-456 (1991)
[2] Bai, E. W.; Lonngran, E. E., Synchronization of two Lorenz systems using active control, Chaos, Soliton & Fractals, 8, 51-58 (1997) · Zbl 1079.37515
[3] Liao, T. L., Adaptive synchronization of two Lorenz systems, Chaos, Soliton & Fractals, 9, 1555-1561 (1998) · Zbl 1047.37502
[4] Wang, C.; Ge, S. S., Adaptive synchronization of uncertain chaotic systems via backstepping design, Chaos, Soliton & Fractals, 12, 1199-1206 (2001) · Zbl 1015.37052
[5] Tan, X.; Zhang, J.; Yang, Y., Synchronizing chaotic systems using backstepping design, Chaos, Soliton & Fractals, 16, 37-45 (2003) · Zbl 1035.34025
[6] Cuomo, K. M.; Oppenheim, A. V.; Strogatz, S. H., Synchronization of Lorenz-based chaotic circuits with applications to communications, IEEE Trans. Circ. Syst. I, 40, 626-633 (1993)
[7] Liao, T. L.; Tsai, S. H., Adaptive synchronization of chaotic systems and its application to secure communications, Chaos, Soliton & Fractals, 11, 1387-1396 (2000) · Zbl 0967.93059
[8] Bai, E. W.; Lonngren, K. E., Synchronization and control of chaotic systems, Chaos, Soliton & Fractals, 10, 1571-1575 (1999) · Zbl 0958.93513
[9] Femat, R.; Alvarez-Ramirez, J.; Fernandez-Anaya, G., Adaptive synchronization of high-order chaotic systems: a feedback with low-order parametrization, Physica D, 139, 231-246 (2000) · Zbl 0954.34037
[10] Femat, R.; Jauregui-Ortiz, R.; Solis-Perales, G. A., Chaos-based communication scheme via robust asymptotic feedback, IEEE Trans. Circuits Syst. I, 48, 1161-1169 (2001)
[11] Wang, C.; Ge, S. S., Synchronization of two uncertain chaotic systems via adaptive backstepping, Int. J. Bifur. Chaos, 6, 1743-1751 (2001) · Zbl 1015.37052
[13] Chua, L. O.; Yang, T.; Zhong, G. Q.; Wu, C. W., Adaptive synchronization of Chua’s circuit, Int. J. Bifur. Chaos, 6, 189-201 (1996)
[14] Bowong, S.; Moukam Kakmeni, F. M., Stability and duration time of chaos synchronization of a class of nonidentical oscillators, Phys. Scr., 68, 626-632 (2003) · Zbl 1063.70021
[15] Isidori, A., Nonlinear control systems (1995), Springer-Verlag: Springer-Verlag London, UK · Zbl 0569.93034
[16] Krstic, M.; Kanellakopoulos, K.; Kokotovic, P., Nonlinear and adaptive control design (1995), John Wiley: John Wiley New York
[17] Teel, A.; Praly, L., Tools for semiglobal stabilization by partial state and output feedback, SIAM J. Contr. Opt., 33, 1443-1488 (1995) · Zbl 0843.93057
[18] Di Bernado, M., Adaptive approach to the control and synchronization of continuous-time chaotic systems, Int. J. Bifur. Chaos, 56, 557-568 (1996) · Zbl 0900.70413
[19] Itoh, M.; Wu, C. W.; Chua, L. O., Communication systems via chaotic signals from a reconstruction viewpoint, Int. J. Bifur. Chaos, 7, 275-286 (1997) · Zbl 0890.94007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.