The role of friction on sharp indentation. (English) Zbl 1045.74572

Summary: Frictional effects on sharp indentation of strain hardening solids are examined in this paper. The results of finite element simulations in a wide range of solids allow us to derive two simplified equations, accounting for the influence of the friction coefficient on hardness. Comparisons between the simulations and instrumented micro-indentation experiments are undertaken to ensure the validity of the former to metallic materials. Quantitative estimates of the role of friction on the development of pileup and sinking-in around the contact boundary are also given in the paper. These results provide a physical insight into the plastic flow features of distinctly different solids brought into contact with sharp indenters. Overall, the investigation shows that the amount of pileup can be used to set the range of validity of the two hardness equations indicated above. Friction has the largest influence on the contact response of solids exhibiting considerable piling-up effects (whose parameter \(\sqrt {\alpha} > 1.12\), see text for details), whereas materials developing moderate pileup or sinking-in are less sensitive to friction. Finally, a methodology is devised to assess the influence of the friction coefficient on mechanical properties extracted through indentation experiments.


74M10 Friction in solid mechanics
74M15 Contact in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74-05 Experimental work for problems pertaining to mechanics of deformable solids


Full Text: DOI


[1] ABAQUS User’s manual, V5.8, 1998. Hibbit, Karlsson and Sorensen, Inc., Providence RI.; ABAQUS User’s manual, V5.8, 1998. Hibbit, Karlsson and Sorensen, Inc., Providence RI.
[2] Acharya, A.; Bassani, J. L., Lattice incompatibility and a gradient theory of crystal plasticity, J. Mech. Phys. Solids, 48, 1565-1595 (2000) · Zbl 0963.74010
[3] Alcalá, J., Instrumented indentation of Zirconia ceramics, J. Am. Ceram. Soc., 83, 1977-1984 (2000)
[4] Alcalá, J.; Giannakopoulos, A. E.; Suresh, S., Continuous measurements of load-penetration curves with spherical microindenters and the estimation of mechanical properties, J. Mater. Res., 13, 1390-1400 (1998)
[5] Alcalá, J.; Barone, A. C.; Anglada, M., The influence of plastic hardening on surface deformation modes around Vickers and spherical indents, Acta Mater., 48, 3451-3464 (2000)
[6] Beeuwkes, R.; Chait, R.; Lin, H. H., The practical determination of flow curves by indentation hardness methods, (Westbrook, J. H.; Conrad, H., The Science of Hardness Testing and its Research Applications (1973), American Society for Metals: American Society for Metals Ohio)
[7] Bhattacharya, A. K.; Nix, W. D., Finite element simulation of indentation experiments, Int. J. Solids Struct., 24, 881-891 (1988)
[8] Biwa, S.; Storåkers, B., An analysis of fully plastic Brinell indentation, J. Mech. Phys. Solids, 43, 1303-1333 (1995) · Zbl 0918.73094
[9] Bobji, M. S.; Biswas, S. K., Deconvolution of hardness from data obtained from nano-indentation of rough surfaces, J. Mater. Res., 14, 2259-2268 (1999)
[10] Bouzakis, K.-D.; Michailidis, N.; Hadjiyannis, S.; Skordaris, G.; Erkens, G., The effect of specimen roughness and indenter tip geometry on the determination accuracy of thin hard coatings stress-strain laws by nanoindentation, Mater. Charact., 49, 149-156 (2003)
[11] Bower, A. F.; Fleck, N. A.; Needleman, A.; Ogbonna, N., Indentation of power law creeping solid, Proc. R. Soc. London A, 441, 97-124 (1993) · Zbl 0807.73064
[12] Carlsson, S.; Biwa, S.; Larsson, P. L., On frictional effects at inelastic contact between spherical bodies, Int. J. Mech. Sci., 42, 107-128 (1999) · Zbl 0989.74049
[13] Cheng, Y. T.; Cheng, C. M., Scaling relationships in conical indentation of elastic perfectly plastic solids, Int. J. Solids Struct., 36, 1231-1243 (1999) · Zbl 0938.74047
[14] Dao, M.; Chollacoop, N.; Van Vliet, K. J.; Venkatesh, T. A.; Suresh, S., Computational modelling of the forward and reverse problems in instrumented indentation, Acta Mater., 49, 3899-3918 (2001)
[15] Doerner, M. F.; Nix, W. D., A method for interpreting data from depth-sensing indentation instruments, J. Mater. Res., 1, 601-609 (1986)
[16] Elmustafa, A. A.; Stone, D. S., Nanoindentation and the indentation size effectkinetics of deformation and strain gradient plasticity, J. Mech. Phys. Solids, 51, 357-381 (2003) · Zbl 1015.74511
[17] Elmustafa, A.A., Stone, D.S., in press. Mater. Sci. Eng. A.; Elmustafa, A.A., Stone, D.S., in press. Mater. Sci. Eng. A.
[18] Elmustafa, A. A.; Eastman, J. A.; Rittner, M. N.; Weertman, J. R.; Stone, D. S., Indentation size effectlarge grained aluminum versus nanocrystalline aluminum-zirconium alloys, Scripta Mater., 43, 951-955 (2000)
[19] Follansbee, P. S.; Sinclair, G. B., Quasi-static normal indentation of an elasto-plastic half-space by a rigid sphere-I. Analysis, Int. J. Solids Struct., 20, 81-91 (1984) · Zbl 0529.73095
[20] Gao, H.; Huang, Y.; Nix, W. D.; Hutchinson, J. W., Mechanism based strain gradient plasticity I. Theory, J. Mech. Phys. Solids, 47, 1239-1263 (1999) · Zbl 0982.74013
[21] Giannakopoulos, A. E.; Larsson, P.-L.; Vestergaard, R., Analysis of Vickers indentation, Int. J. Solids Struct., 31, 2679-2708 (1994) · Zbl 0943.74502
[22] Hardy, C.; Baronet, C. N.; Tordion, G. V., The elasto-plastic indentation of a half-space by a rigid sphere, Int. J. Num. Meth. Eng., 3, 451-462 (1971)
[23] Hill, R., The Mathematical Theory of Plasticity (1950), Oxford University Press: Oxford University Press New York · Zbl 0041.10802
[24] Hill, R.; Storåkers, B.; Zduneck, A. B., A theoretical study of the Brinell hardness test, Proc. R. Soc. London A, 423, 301-330 (1989) · Zbl 0729.73065
[25] Huber, N.; Tsakmakis, Ch., Determination of constitutive properties from spherical indentation data using neural networks. Part I: the case of pure kinematic hardening in plasticity laws, J. Mech. Phys. Solids, 47, 1569-1588 (1999) · Zbl 0960.74015
[26] Johnson, K. L., The correlation of indentation experiments, J. Mech. Phys. Solids, 18, 115-126 (1970)
[27] Johnson, K. L., Contact Mechanics (1985), Cambridge University Press: Cambridge University Press London · Zbl 0599.73108
[28] King, R. B., Elastic analysis of some punch problems for a layered medium, Int. J. Solids Struct., 23, 1657-1664 (1987) · Zbl 0627.73099
[29] Larsson, P.-L., Analysis of Berkovich indentation, Int. J. Solids Struct., 33, 221-248 (1996) · Zbl 0900.73695
[30] Larsson, P.-L., Investigation of sharp contact at rigid-plastic conditions, Int. J. Mech. Sci., 43, 895-920 (2001) · Zbl 1169.74506
[31] Lee, C. H.; Masaki, S.; Kobayashi, S., Analysis of ball indentation, Int. J. Mech. Sci., 14, 417-426 (1972)
[32] Li, H.; Bradt, R. C., The microhardness indentation load/size effect in rutile and cassiterite single crystals, J. Mater. Sci., 28, 917-926 (1993)
[33] Li, H.; Ghosh, A.; Han, Y. H.; Bradt, R. C., The frictional component of the indentation size effect in low load microhardness testing, J. Mater. Res., 8, 1028-1032 (1993)
[34] Mata, M.; Alcalá, J., Mechanical property evaluation through indentation experiments in elasto-plastic and fully plastic contact regimes, J. Mater. Res., 18, 1705-1709 (2003)
[35] Mata, M.; Anglada, M.; Alcalá, J., Contact deformation regimes around sharp indentations and the concept of the characteristic strain, J. Mater. Res., 17, 964-976 (2002)
[36] Mata, M.; Anglada, M.; Alcalá, J., A hardness equation for sharp indentation of elastic-power-law strain-hardening materials, Philos. Mag. A., 82, 1831-1839 (2002)
[37] Mesarovic, S.; Fleck, N., Spherical indentation of elastic-plastic solids, Proc. R. Soc. London A, 455, 2707-2728 (1999) · Zbl 1062.74662
[38] Oliver, W. C.; Pharr, G. M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7, 1564-1583 (1992)
[39] Sawa, T.; Tanaka, K., Simplified method for analyzing nanoindentation data and evaluating performance of nanoindentation instruments, J. Mater. Res., 16, 3084-3096 (2001)
[40] Sneddon, I. N., The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci., 3, 47-57 (1965) · Zbl 0128.42002
[41] Tabor, D., Hardness of Metals (1951), Clarendon Press: Clarendon Press UK
[42] Tabor, D., Indentation hardness and its measurement: some cautionary comments, (Blau, P. J.; Lawn, B. R., Microindentation Techniques in Materials Science and Engineering, ASTM STP 889 (1986), American Society for Testing and Materials: American Society for Testing and Materials Philadelphia)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.