de Castro, Antonio S. Bound states of the Dirac equation for a class of effective quadratic plus inversely quadratic potentials. (English) Zbl 1045.81021 Ann. Phys. 311, No. 1, 170-181 (2004). Summary: The Dirac equation is exactly solved for a pseudoscalar linear plus Coulomb-like potential in a two-dimensional world. This sort of potential gives rise to an effective quadratic plus inversely quadratic potential in a Sturm-Liouville problem, regardless the sign of the parameter of the linear potential, in sharp contrast with the Schrödinger case. The generalized Dirac oscillator already analyzed in a previous work is obtained as a particular case. Cited in 9 Documents MSC: 81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics Keywords:Dirac equation; pseudoscalar potential; effective potential PDF BibTeX XML Cite \textit{A. S. de Castro}, Ann. Phys. 311, No. 1, 170--181 (2004; Zbl 1045.81021) Full Text: DOI arXiv OpenURL References: [1] Landau, L.D.; Lifshitz, E.M., Quantum mechanics, (1958), Pergamon New York · Zbl 0081.22207 [2] Gol’dman, I.I.; Krivchenkov, V.D., Problems in quantum mechanics, (1961), Pergamon London · Zbl 0094.23407 [3] Peak, D.; Inomata, A., J. math. phys., 10, 1422, (1969) [4] Constantinescu, F.; Magyari, E., Problems in quantum mechanics, (1971), Pergamon Oxford [5] Bagrov, V.G.; Gitman, D.M., Exact solutions of relativistic wave equations, (1990), Kluwer Dordrecht · Zbl 0723.35066 [6] Pama, G.; Raff, U., Am. J. phys., 71, 247, (2003) [7] Calogero, F., J. math. phys., 10, 2191, (1969) [8] Calogero, F., J. math. phys., 12, 419, (1971) [9] Hall, R.L.; Saad, N.; von Keviczky, A., J. math. phys., 39, 6345, (1998) [10] Hall, R.L.; Saad, N., J. phys. A, 33, 5531, (2000) [11] Hall, R.L.; Saad, N., J. phys. A, 33, 569, (2000) [12] Hall, R.L.; Saad, N., J. phys. A, 34, 1169, (2001) [13] Hall, R.L.; Saad, N.; von Keviczky, A., J. math. phys., 43, 94, (2002) [14] Hall, R.L.; Saad, N.; von Keviczky, A., J. phys. A, 36, 487, (2003) [15] Nagiyev, S.M.; Jafarov, E.I.; Imanov, R.M., J. phys. A, 36, 7813, (2003) [16] Camiz, P.; Gerardi, A.; Marchioro, C.; Presutti, E.; Scacciatelli, E., J. math. phys., 12, 2040, (1971) [17] Dodonov, V.V.; Malkin, I.A.; Man’ko, V.I., Phys. lett. A, 39, 377, (1972) [18] de Castro, A.S., Phys. lett. A, 318, 40, (2003) [19] Strange, P., Relativistic quantum mechanics, (1998), Cambridge University Press Cambridge [20] de Castro, A.S.; Pereira, W.G., Phys. lett. A, 308, 131, (2003) [21] de Castro, A.S., Phys. lett. A, 309, 340, (2003) [22] Moshinsky, M.; Szczepaniak, A., J. phys. A, 22, L817, (1989) [23] Nogami, Y.; Toyama, F.M., Can. J. phys., 74, 114, (1996) [24] Toyama, F.M.; Nogami, Y.; Coutinho, F.A.B., J. phys. A, 30, 2585, (1997) [25] Toyama, F.M.; Nogami, Y., Phys. rev. A, 59, 1056, (1999) [26] Szmytkowski, R.; Gruchowski, M., J. phys. A, 34, 4991, (2001) [27] Pacheco, M.H.; Landim, R.; Almeida, C.A.S., Phys. lett. A, 311, 93, (2003) [28] Thaller, B., The Dirac equation, (1992), Springer Berlin · Zbl 0881.47021 [29] Abramowitz, M.; Stegun, I.A., Handbook of mathematical functions, (1965), Dover Toronto · Zbl 0515.33001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.