×

On Artin \(L\)-functions for octic quaternion fields. (English) Zbl 1046.11083

Summary: We study the Artin \(L\)-function \(L(s,\chi)\) associated to the unique character \(\chi\) of degree 2 in quaternion fields of degree 8. We first explain how to find examples of quaternion octic fields with not too large a discriminant. We then develop a method yielding a quick computation of the order \(n_\chi\) of the zero of \(L(s,\chi)\) at the point \(s=\tfrac 12\). In all our calculations, we find that \(n_\chi\) only depends on the sign of the root number \(W(\chi)\); indeed \(n_\chi=0\) when \(W(\chi)=+1\) and \(n_\chi=1\) when \(W(\chi)=-1\). Finally we give some estimates on \(n_\chi\) and low zeros of \(L(s,\chi)\) on the critical line in terms of the Artin conductor \({\mathfrak f}_\chi\) of the character \(\chi\).

MSC:

11R42 Zeta functions and \(L\)-functions of number fields

References:

[1] Barner K., J. Reine Angew. Math. 323 pp 139– (1981)
[2] Cohen H., A course in computational algebraic number theory (1993) · Zbl 0786.11071
[3] DOI: 10.1007/978-1-4419-8489-0 · Zbl 0977.11056 · doi:10.1007/978-1-4419-8489-0
[4] Damey P., J. Reine Angew. Math. 244 pp 37– (1970)
[5] DOI: 10.1007/BF01418937 · Zbl 0261.12008 · doi:10.1007/BF01418937
[6] Goss D., Basic structures of function field arithmetic (1996) · Zbl 0874.11004
[7] Kwon S.-H., Arch. Math. (Basel) 67 (2) pp 119– (1996) · Zbl 0854.11057 · doi:10.1007/BF01268925
[8] Martinet J., Ann. Sci. École Norm. Sup. (4) 4 pp 399– (1971)
[9] Martinet J., Algebraic number fields: L-functions and Galois properties (Durham, Durham, 1975) pp 1– (1977)
[10] Mestre J.-F., Séminaire de thaéorie des nombres (Paris, 1981/1982) pp 179– (1983)
[11] Mestre J.-F., Compositio Math. 58 (2) pp 209– (1986)
[12] Murty M. R., Non-vanishing of L-functions and applications (1997) · Zbl 1235.11086 · doi:10.1007/978-3-0348-0274-1
[13] Poitou G., Séminaire Delange–Pisot–Poitou, 18e année (1976/77) (1977)
[14] Serre J.-P., Cours d’arithmétique (1970)
[15] Serre J.-P., Représentations linéaires des groupes finis, (1978)
[16] Stark H. M., Invent. Math. 23 pp 135– (1974) · Zbl 0278.12005 · doi:10.1007/BF01405166
[17] DOI: 10.1090/S0025-5718-97-00871-5 · Zbl 0877.11061 · doi:10.1090/S0025-5718-97-00871-5
[18] Weil A., Izv. Akad. Nauk SSSR Ser. Mat. 36 pp 3– (1972)
[19] DOI: 10.1515/crll.1936.174.237 · Zbl 0013.19601 · doi:10.1515/crll.1936.174.237
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.