×

Measure-based aggregation operators. (English) Zbl 1046.28011

Summary: In analogy to the representation of the standard probabilistic average as an expected value of a random variable, a geometric approach to aggregation is proposed, generalizing Imaoka’s integral based on copulas. Several properties of such aggregation operators are investigated, and the relationship with distinguished classes of aggregation operators is discussed.

MSC:

28E10 Fuzzy measure theory
68T37 Reasoning under uncertainty in the context of artificial intelligence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Benvenuti, P.; Mesiar, R., Integrals with respect to a general fuzzy measure, (Grabisch, M.; Murofushi, T.; Sugeno, M., Fuzzy Measures and Integrals, Theory and Applications (2000), Physica-Verlag: Physica-Verlag Heidelberg), 205-232 · Zbl 0957.28013
[2] T. Calvo, G. Mayor, R. Mesiar (Eds.), Aggregation Operators, New Trends and Applications, Physica-Verlag, Heidelberg, 2002.; T. Calvo, G. Mayor, R. Mesiar (Eds.), Aggregation Operators, New Trends and Applications, Physica-Verlag, Heidelberg, 2002. · Zbl 0983.00020
[3] Choquet, G., Theory of capacities, Ann. Inst. Fourier (Grenoble), 5, 131-292 (1953/54) · Zbl 0064.35101
[4] Denneberg, D., Non-additive Measure and Integral (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0826.28002
[5] J. Frank, M., On the simultaneous associativity of \(F(x,y)\) and \(x+y−F(x,y)\), Aequationes Math., 19, 194-226 (1979) · Zbl 0444.39003
[6] Imaoka, H., On a subjective evaluation model by a generalized fuzzy integral, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 5, 517-529 (1997) · Zbl 1232.68132
[7] Imaoka, H., Comparison between three fuzzy integrals, (Grabisch, M.; Murofushi, T.; Sugeno, M., Fuzzy Measures and Integrals, Theory and Applications (2000), Physica-Verlag: Physica-Verlag Heidelberg), 273-286 · Zbl 0957.28014
[8] Klement, E. P.; Mesiar, R.; Pap, E., Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 8, 701-717 (2000) · Zbl 0991.28014
[9] Klement, E. P.; Mesiar, R.; Pap, E., Triangular Norms (2000), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0972.03002
[10] Klement, E. P.; Mesiar, R.; Pap, E., Invariant copulas, Kybernetika (Prague), 38, 275-286 (2002) · Zbl 1264.62045
[11] Klir, G. J.; Folger, T. A., Fuzzy Sets, Uncertainty, and Information (1988), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0675.94025
[12] Kolesárová, A.; Komornı́ková, M., Triangular norm-based iterative aggregation operators, Fuzzy Sets and Systems, 104, 109-120 (1999) · Zbl 0931.68123
[13] Mesiar, R., Choquet like integrals, J. Math. Anal. Appl., 194, 477-488 (1995) · Zbl 0845.28010
[14] Nelsen, R. B., An Introduction to Copulas, Lecture Notes in Statistics, vol. 139 (1999), Springer: Springer New York · Zbl 0909.62052
[15] Pap, E., Null-Additive Set Functions (1995), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0856.28001
[16] Ralescu, A. L.; Ralescu, D. A., Extensions of fuzzy aggregation, Fuzzy Sets and Systems, 86, 321-330 (1997) · Zbl 0914.28016
[17] Shilkret, N., Maxitive measure and integration, Indag. Math., 33, 109-116 (1971) · Zbl 0218.28005
[18] Sklar, A., Fonctions de répartition à \(n\) dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris, 8, 229-231 (1959) · Zbl 0100.14202
[19] M. Sugeno, Theory of fuzzy integrals and its applications. Ph.D. Thesis, Tokyo Institute of Technology, 1974.; M. Sugeno, Theory of fuzzy integrals and its applications. Ph.D. Thesis, Tokyo Institute of Technology, 1974.
[20] Wang, Z.; Klir, G. J., Fuzzy Measure Theory (1992), Plenum Press: Plenum Press New York · Zbl 0812.28010
[21] Weber, S., Two integrals and some modified versionscritical remarks, Fuzzy Sets and Systems, 20, 97-105 (1986) · Zbl 0595.28012
[22] Yager, R. R., On ordered weighted averaging aggregation operators in multicriteria decisionmaking, IEEE Trans. Systems Man Cybernet., 18, 183-190 (1988) · Zbl 0637.90057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.