[1] |
Denneberg, D.: Non-additive measure and integral. (1997) · Zbl 0927.28011 |

[2] |
Dobrakov, I.: On submeasures I. Dissertationes math. 112, 1-35 (1974) |

[3] |
Ghirardato, P.: On independence for non-additive measures, with a Fubini theorem. J. econom. Theory 73, 261-291 (1997) · Zbl 0934.28012 |

[4] |
Gilboa, I.; Schmeidler, D.: Additive representations of non-additive measures and the Choquet integral. Ann. oper. Res. 52, 43-65 (1994) · Zbl 0814.28010 |

[5] |
Li, J.: Order continuous of monotone set function and convergence of measurable functions sequence. Appl. math. Comput. 135, 211-218 (2003) · Zbl 1025.28012 |

[6] |
Li, J.: On egoroff’s theorems on fuzzy measure spaces. Fuzzy sets and systems 135, 367-375 (2003) · Zbl 1014.28015 |

[7] |
Murofushi, T.; Sugeno, M.: A theory of fuzzy measuresrepresentations, the Choquet integral, and null sets. J. math. Anal. appl. 159, 532-549 (1991) · Zbl 0735.28015 |

[8] |
Murofushi, T.; Sugeno, M.; Suzaki, M.: Autocontinuity, convergence in measure, and convergence in distribution. Fuzzy sets and systems 92, 197-203 (1997) · Zbl 0927.28012 |

[9] |
Pap, E.: Null-additive set functions. (1995) · Zbl 0856.28001 |

[10] |
Puri, M. L.; Ralescu, D.: A possibility measure is not a fuzzy measure. Fuzzy sets and systems 7, 311-313 (1982) · Zbl 0543.28002 |

[11] |
M. Sugeno, Theory of fuzzy integrals and its applications, Doctoral Thesis, Tokyo Institute of Technology, 1974. |

[12] |
Sun, Q.: Property (S) of fuzzy measure and Riesz’s theorem. Fuzzy sets and systems 62, 117-119 (1994) · Zbl 0824.28014 |

[13] |
K. Uchino, T. Murofushi, Relations between mathematical properties of fuzzy measures, Proc. 10th IFSA World Congr., Istanbul, Turkey, 2003, pp. 27--30. |

[14] |
Wagner, E.; Wilczynski, W.: Convergence almost everywhere of sequences of measurable functions. Colloq. math. 45, 119-124 (1981) · Zbl 0497.28006 |

[15] |
Wang, Z.; Klir, G. J.: Fuzzy measure theory. (1992) · Zbl 0812.28010 |