Leine, R. I.; van Campen, D. H. Discontinuous bifurcations of periodic solutions. (English) Zbl 1046.34016 Math. Comput. Modelling 36, No. 3, 259-273 (2002). The authors discuss some aspects of bifurcations of periodic solutions in systems with a discontinuous vector field. Using the example \[ m\ddot x+C(\dot x) + K(x) = f_0\sin(\omega t), \] the authors demonstrate, under certain assumptions on the functions \(K(x)\) and \(C(\dot x)\), how the Floquet multipliers of a discontinuous system can jump when the system parameters are changed. Numerical examples show a discontinuous fold and symmetry-breaking bifurcations. Reviewer: Anatoly Martynyuk (Kyïv) Cited in 20 Documents MSC: 34A36 Discontinuous ordinary differential equations 34C23 Bifurcation theory for ordinary differential equations 34C25 Periodic solutions to ordinary differential equations Keywords:discontinuous; bifurcation; stick-slip; dry friction PDF BibTeX XML Cite \textit{R. I. Leine} and \textit{D. H. van Campen}, Math. Comput. Modelling 36, No. 3, 259--273 (2002; Zbl 1046.34016) Full Text: DOI References: [1] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, (Applied Mathematical Sciences 42 (1983), Springer-Verlag: Springer-Verlag New York) · Zbl 0515.34001 [2] Hagedorn, P., Non-Linear Oscillations, (Oxford Engineering Science Series 10 (1988), Clarendon Press: Clarendon Press Oxford) · Zbl 0202.24102 [3] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory, (Applied Mathematical Sciences 112 (1995), Springer-Verlag: Springer-Verlag New York) · Zbl 0351.65024 [4] Seydel, R., Practical Bifurcation and Stability Analysis; From Equilibrium to Chaos, Interdisciplinary Applied Mathematics (1994), Springer-Verlag: Springer-Verlag New York · Zbl 0806.34028 [5] Begley, C. J.; Virgin, L. N., A detailed study of the low-frequency periodic behavior of a dry friction oscillator, Journal of Dynamic Systems, Measurement, and Control, 119, 491-497 (1997) · Zbl 0903.34040 [6] Begley, C. J.; Virgin, L. N., Impact response under the influence of friction, Journal of Sound and Vibration, 211, 5, 801-818 (1998) [7] Blazejczyk-Okolewska, B.; Kapitaniak, T., Dynamics of impact oscillator with dry friction, Chaos, Solitons and Fractals, 7, 9, 1455-1459 (1996) [8] Galvanetto, U.; Bishop, S. R.; Briseghella, L., Mechanical stick-slip vibrations, International Journal of Bifurcation and Chaos, 5, 3, 637-651 (1995) · Zbl 0925.70286 [9] Galvanetto, U.; Knudsen, C., Event maps in a stick-slip system, Nonlinear Dynamics, 13, 2, 99-115 (1997) · Zbl 0898.70014 [10] Hinrichs, N., Reibsschwingungen mit Selbst- und Fremderregung: Experiment, Modellierung und Berechnung, (Fortschr.-Ber. VDI Reihe 11 (1997), VDI Verlag: VDI Verlag Düsseldorf), Nr. 240 [11] Hinrichs, N.; Oestreich, M.; Popp, K., On the modelling of friction oscillators, Journal of Sound and Vibration, 216, 3, 435-459 (1998) [12] Ibrahim, R. A., Friction-induced vibration, chatter, squeal and, chaos; Part I: Mechanics of contact and friction, ASME Applied Mechanics Reviews, 47, 7, 209-226 (1994) [13] Ibrahim, R. A., Friction-induced vibration, chatter, squeal and, chaos; Part II: Dynamics and modeling, ASME Applied Mechanics Reviews, 47, 7, 227-253 (1994) [14] Kunze, M.; Küpper, T., Qualitative bifurcation analysis of a non-smooth friction oscillator model, ZAMP, 48, 1, 87-101 (1997) · Zbl 0898.70013 [15] Popp, K., (Ibrahim, R. A.; Soom, A., Some model problems showing stick-slip motion and chaos. Some model problems showing stick-slip motion and chaos, ASME WAM, Proc. Symp. on Friction Induced Vibration, Chatter, Squeal, and Chaos (1992), ASME: ASME New York), 1-12, Volume 49 [16] Popp, K.; Hinrichs, N.; Oestreich, M., Dynamical behaviour of a friction oscillator with simultaneous self and external excitation, (Sādhāna: Academy Proceedings in Engineering Sciences, Part 2-4 (1995), Indian Academy of Sciences: Indian Academy of Sciences Banglore, India), 627-654, Volume 20 · Zbl 1048.70503 [17] Reithmeier, E., Periodic Solutions of Nonlinear Dynamical Systems (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0676.70028 [18] Stelter, P., Nonlinear vibrations of structures induced by dry friction, Nonlinear Dynamics, 3, 329-345 (1992) [19] Stelter, P.; Sextro, W., Bifurcations in dynamical systems with dry friction, International Series of Numerical Mathematics, 97, 343-347 (1991) [20] Van de Vrande, B. L.; Van Campen, D. H.; De Kraker, A., An approximate analysis of dry-friction-induced stick-slip vibrations by a smoothing procedure, Nonlinear Dynamics, 19, 2, 157-169 (1999) · Zbl 0966.70013 [21] Wiercigroch, M., On modelling discontinuities in dynamic systems, Machine Vibration, 5, 112-119 (1996) [23] Yoshitake, Y.; Sueoka, A.; Shoji, N.; Hai, T., Vibrations of nonlinear systems with discontinuities, The case of the preloaded compliance system, JSME Series C, 41, 4, 710-717 (1998) [24] Andronov, A. A.; Vitt, A. A.; Khaikin, S. E., Theory of Oscillators (1987), Dover Publications: Dover Publications New York, Reprint · Zbl 0188.56304 [25] Filippov, A. F., Differential equations with discontinuous right-hand side, American Mathematical Society Translations, Series 2, 42, 199-231 (1964) · Zbl 0148.33002 [26] Filippov, A. F., Differential equations with discontinuous right-hand sides, (Mathematics and Its Applications (1988), Kluwer Academic: Kluwer Academic Dordrecht) · Zbl 1098.34006 [27] Brogliato, B., Nonsmooth Mechanics (1999), Springer: Springer London · Zbl 0917.73002 [28] Feigin, M. I., On the generation of sets of subharmonic modes in a piecewise-continuous system, PMM, 38, 5, 810-818 (1974) · Zbl 0317.70030 [29] Feigin, M. I., On the structure of C-bifurcation boundaries of piece-wise continuous systems, PMM, 42, 5, 820-829 (1978) [30] Feigin, M. I., The increasingly complex structure of the bifurcation tree of a piecewise-smooth system, Journal of Applied Mathematics and Mechanics, 59, 6, 853-863 (1995) · Zbl 0884.58074 [31] di Bernardo, M.; Feigin, M. I.; Hogan, S. J.; Homer, M. E., Local analysis of C-bifurcations in \(n\)-dimensional piecewise-smooth dynamical systems, Chaos, Solitons and Fractals, 10, 11, 1881-1908 (1999) · Zbl 0967.37030 [32] di Bernardo, M.; Johansson, K.; Vasca, F., Sliding orbits and their bifurcations in relay feedback systems, (Phoenix, December 1999. Phoenix, December 1999, Proceedings of the \(38^{th}\) Conference on Design & Control (1999), CD-ROM publication), 708-713 [33] di Bernardo, M.; Budd, C.; Champneys, A., Grazing, skipping and sliding: Analysis of the non-smooth dynamics of the DC/DC buck converter, Nonlinearity, 11, 859-890 (1998) · Zbl 0904.34034 [34] Nusse, H. E.; York, J. A., Border-collision bifurcations including “period two to period three” for piecewise smooth systems, Physica D, 57, 39-57 (1992) · Zbl 0760.58031 [35] Nayfeh, A. H.; Balachandran, B., Applied Nonlinear Dynamics; Analytical, Computational, and Experimental Methods (1995), Wiley-International: Wiley-International Chichester · Zbl 0848.34001 [36] Nayfeh, A. H.; Mook, D. T., Nonlinear Oscillations (1979), Wiley: Wiley New York [37] Natsiavas, S., Periodic response and stability of oscillators with symmetric trilinear restoring force, Journal of Sound and Vibration, 134, 2, 315-331 (1989) · Zbl 1235.70094 [38] Natsiavas, S.; Gonzalez, H., Vibration of harmonically excited oscillators with asymmetric constraints, ASME Journal of Applied Mechanics, 59, 284-290 (1992) [39] Aizerman, M. A.; Gantmakher, F. R., On the stability of periodic motions, Journal of Applied Mathematics and Mechanics, 1065-1078 (1958), (translated from Russian) · Zbl 0086.29102 [40] Bockman, S. F., Lyapunov exponents for systems described by differential equations with discontinuous righthand sides, (Proceedings of the American Control Conference (1991)), 1673-1678 [41] Leine, R. I., Bifurcations in nonlinear discontinuous systems, (Ph.D. Thesis (June 2000), Eindhoven University of Technology: Eindhoven University of Technology The Netherlands) · Zbl 1111.34034 [42] Müller, P. C., Calculation of Lyapunov exponents for dynamic systems with discontinuities, Chaos, Solitons and Fractals, 5, 9, 1671-1681 (1995) · Zbl 1080.34540 [43] Leine, R. I.; Van Campen, D. H.; De Kraker, A.; Van den Steen, L., Stick-slip vibrations induced by alternate friction models, Nonlinear Dynamics, 16, 1, 41-54 (1998) · Zbl 0908.70021 [44] Leine, R. I.; Van Campen, D. H., Proceedings of DETC’99 ASME Design Engineering Technical Conferences, (Fold bifurcations in discontinuous systems. Fold bifurcations in discontinuous systems, September 12-15, 1999, Las Vegas. Fold bifurcations in discontinuous systems. Fold bifurcations in discontinuous systems, September 12-15, 1999, Las Vegas, CD-ROM, DETC99/VIB-8034 (1999)) · Zbl 1046.34016 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.