zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Integrability and linearizability of the Lotka-Volterra systems. (English) Zbl 1046.34075
The authors investigate the integrability and linearizability of Lotka-Volterra systems. They derive sufficient conditions for integrable but not linearizable systems for any rational resonance ratio. Sufficient conditions for linearizable Lotka-Volterra systems are given.

34C05Location of integral curves, singular points, limit cycles (ODE)
37C10Vector fields, flows, ordinary differential equations
34A05Methods of solution of ODE
92D25Population dynamics (general)
Full Text: DOI
[1] Bruno, A. D.: Analytic form of differential equations. Trans. Moscow math. Soc. 25, 131-288 (1971)
[2] C. Chistopher, P. Mardesic, C. Rousseau, Normalizable, integrable and linearizable saddle points in complex quadratic systems in C2, preprint, CRM 2687, University of Montreal, 2000.
[3] Dulac, H.: Détermination et intégration d’une certaine classe d’équations différentielles ayant pour point singulier un centre. Bull. sci. Math. 32, 230-252 (1908) · Zbl 39.0374.01
[4] J.P. Françoise, A. Fronville, Computer algebra and bifurcation theory of vector fields of the plane, Proceedings of the Third Catalan Days on Applied Mathematics, Lleida, 1996, pp. 57--63. · Zbl 0901.68088
[5] Fronville, A.; Sadovski, A.; Zoladek, H.: Solution of the 1:-2 resonant centre problem in the quadratic case. Fund. math. 157, 191-207 (1998) · Zbl 0943.34018
[6] Gravel, S.; Thibault, P.: Integrability and linearizability of the Lotka--Volterra system with a saddle point with rational hyperbolicity ratio. J. differential equations 184, 20-47 (2002) · Zbl 1054.34049
[7] Lunkevich, V. A.; Sibirskii, K. S.: Integrals of a system with homogeneous nonlinearities of the third degree in cases of a center. Differ. uravneniya 20, 1360-1365 (1984) · Zbl 0576.34029
[8] Sibirskii, K. S.: Introduction to the algebraic theory of invariants of differential equations. (1988)
[9] Zoladek, H.: The problem of center for resonant singular points of polynomial vectro fields. J. differential equations 137, 94-118 (1997)