zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability of solitary waves for a rod equation. (English) Zbl 1046.35094
Summary: We consider a new rod equation derived recently by {\it H.-H. Dai} [Acta Mech. 127, No. 1--4, 193--207 (1998; Zbl 0910.73036)] for a compressible hyperelastic material. We prove that the smooth solitary waves to this rod equation are orbital stable.

MSC:
35Q51Soliton-like equations
35B35Stability of solutions of PDE
74H55Stability (dynamical problems in solid mechanics)
74J35Solitary waves (solid mechanics)
WorldCat.org
Full Text: DOI
References:
[1] Benjamin, T. B.; Bona, J. L.; Mahony, J. J.: Model equations for long waves in nonlinear dispersive systems. Philos. trans. R. soc. London ser. A 272, No. 1220, 47-78 (1972) · Zbl 0229.35013
[2] Camassa, R.; Holm, D.: An integrable shallow water equation with peaked solitons. Phys. rev. Lett. 71, 1661-1664 (1993) · Zbl 0972.35521
[3] Constantin, A.; Escher, J.: Well-posedness, global existence and blow-up phenomena for a periodic quasi-linear hyperbolic equation. Commun. pure appl. Math. 51, 475-504 (1998) · Zbl 0934.35153
[4] Constantin, A.; Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta math. 181, 229-243 (1998) · Zbl 0923.76025
[5] Constantin, A.; Strauss, W.: Stability of peakons. Commun. pure appl. Math. 53, 603-610 (2000) · Zbl 1049.35149
[6] Dai, H. -H.: Model equations for nonlinear dispersive waves in a compressible mooney--rivlin rod. Acta mech. 127, No. 1--4, 193-207 (1998) · Zbl 0910.73036
[7] Dai, H. -H.; Huo, Y.: Solitary shock waves and other travelling waves in a general compressible hyperelastic rod. R. soc. London proc. Ser. A math. Phys. eng. Sci. 456, No. 1994, 331-363 (2000)
[8] Dunford, N.; Schwartz, J. T.: Linear operators. (1988)
[9] Grillakis, M.; Shatah, J.; Strauss, W.: Stability theory of solitary waves in the presence of symmetry. Int. J. Funct. anal. 74, No. 1, 160-197 (1987) · Zbl 0656.35122
[10] Li, Y.; Olver, P.: Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation. J. different. Equat. 162, 27-63 (2000) · Zbl 0958.35119
[11] Lopes, O.: Stability of peakons for the generalized Camassa--Holm equation. Electron. J. Different. equat., No. 5, 12 (2003) · Zbl 1088.35060
[12] Lopes, O.: Nonlocal variational problems arising in long wave propagation. ESAIM control optim. Calc. var. 5, 501-528 (2000) · Zbl 0969.35046
[13] Mckean, H. P.: Breakdown of a shallow water equation. Asian J. Math. 2, No. 4, 867-874 (1998) · Zbl 0959.35140
[14] Shkoller, S.: Geometry and curvature of diffeomorphism groups with H1 metric and mean hydrodynamics. J. funct. Anal. 160, No. 1, 337-365 (1998) · Zbl 0933.58010
[15] Souganidis, P. E.; Strauss, W. A.: Instability of a class of dispersive solitary waves. Proc. R. Soc. Edinburgh sect. A 114, No. 3--4, 195-212 (1990) · Zbl 0713.35108
[16] Xin, Z.; Zhang, P.: On the weak solution to a shallow water equation. Commun. pure appl. Math. 53, 1411-1433 (2000) · Zbl 1048.35092
[17] Xin, Z.; Zhang, P.: On the uniqueness and large time behavior of the weak solutions to a shallow water equation. Commun. part. Different. equat. 27, No. 9--10, 1815-1844 (2002) · Zbl 1034.35115
[18] Y. Zhou, Wave breaking for a periodic shallow water equation. J Math Anal Appl (to appear) · Zbl 1042.35060
[19] Y. Zhou, Well-posedness and blow-up criteria of solutions for a rod equation, Preprint, 2003
[20] Y. Zhou, Blow-up phenomenon for a periodic rod equation, Preprint, 2003