×

New compacton solutions and solitary wave solutions of fully nonlinear generalized Camassa–Holm equations. (English) Zbl 1046.35101

Summary: We introduce the fully nonlinear generalized Camassa-Holm equation \(C(m,n,p)\) and by using four direct ansatzes, we obtain abundant solutions: compactons (solutions with the absence of infinite wings), solitary patterns solutions having infinite slopes or cups, solitary waves and singular periodic wave solutions and obtain kink compacton solutions and nonsymmetry compacton solutions. We also study other forms of fully nonlinear generalized Camassa-Holm equation, and their compacton solutions are governed by linear equations.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35Q51 Soliton equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Rosenau, P.; Hyman, M., Phys. Rev. Lett., 70, 564 (1993)
[2] Rosenau, P., Phys. Rev. Lett., 73, 1737 (1994)
[3] Rosenau, P., Phys. Lett. A, 230, 305 (1997)
[4] Rosenau, P., Phys. Lett. A, 275, 193 (2000)
[5] Dinda, P. T.; Remoissent, M., Phys. Rev. E, 60, 6218 (1999)
[6] Rosneau, P.; Levy, D., Phys. Lett. A, 252, 297 (1999)
[7] Dey, B., Phys. Rev. E, 57, 4733 (1998)
[8] Wazwaz, A. M., Chaos, Solitons & Fractals, 13, 161 (2002)
[9] Wazwaz, A. M., Chaos, Solitons & Fractals, 13, 1053 (2002)
[10] Yan, Z. Y.; Bluman, G., Commun. Theor. Phys., 149, 11 (2002)
[11] Camassa, R.; Holm, D., Phys. Rev. Lett., 71, 1661-1664 (1993)
[12] Fisher, M.; Sshiff, J., Phys. Lett. A, 259, 3, 371-376 (1999)
[13] Clarkson, P. A.; Mansfiel, E. L.; Priestley, T. J., Math. Comput. Modell., 25, 819, 195-212 (1997)
[14] Kraenkel, R. A.; Senthilvelsn, M.; Zenchu, A. I., J. Math. Phys., 41, 5, 3160-3169 (2000)
[15] Cooper, F.; Shepard, H., Phys. Lett. A, 194, 246-250 (1994)
[16] Tian, L.; Xu, G.; Liu, Z., Appl. Math. Mech., 123, 5, 557-567 (2002)
[17] Tian, L.; Song, X., New peaked solitary wave solutions of the generalized Camassa-Holm equation, Chaos, Solitons & Fractals, 19, 621-637 (2004) · Zbl 1068.35123
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.