zbMATH — the first resource for mathematics

Speed of stochastic locally contractive systems. (English) Zbl 1046.60067
The author considers the autoregressive model on \({\mathbb R}^d\) defined by \(Y_n^y = a_n Y_{n-1}^y +B_n\) where \(\{(a_n,B_n)\}\) is a sequence of i.i.d. random variables in \({\mathbb R}_+^* \times {\mathbb R}^d\) and \(Y_0^y = y\). In this case \(Y_n^y-Y_n^x= e^{S_n} (y-x)\) where \(S_n=\sum_{i=1}^n \log a_i\). If \(E(\log a_1)<0\), then \(| Y_n^y-Y_n^x|\) goes to zero with an exponential speed and the iterated function system \(Y_n^y\) is strongly contractive. In the critical case \(E(\log a_1)=0\) has \(Y_n^y\) a local contraction property, i.e. if \(Y_n^y\) is in a compact set, then \(| Y_n^y-Y_n^x| \to 0\) a.s. The speed of this convergence is determined and the results are extended to some higher-dimensional situations and to a Markov chain on a nilpotent Lie group induced by a random walk on a solvable Lie group of \({\mathcal N}{\mathcal A}\) type.

60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
60B12 Limit theorems for vector-valued random variables (infinite-dimensional case)
60G50 Sums of independent random variables; random walks
Full Text: DOI Euclid
[1] Babillot, M., Bougerol, P. and Elie, L. (1997). The random difference equation \(X_ n=A_ nX_ n-1+B_ n\) in the critical case. Ann. Probab. 25 478–493. · Zbl 0873.60045
[2] Benda, M. (1999). Contractive stochastic dynamical systems. · Zbl 0928.60047
[3] Bougerol, P. and Lacroix, J. (1985). Products of Random Matrices with Applications to Schrödinger Operators . Birkhäuser, Boston. · Zbl 0572.60001
[4] Bougerol, P. and Picard, N. (1992). Strict stationarity of generalized autoregressive processes. Ann. Probab. 20 1714–1730. JSTOR: · Zbl 0763.60015
[5] Brofferio, S. (2003). How a centered random walk on the affine group goes to infinity. Ann. Inst. H. Poincaré 39 371–384. · Zbl 1016.60006
[6] Cartwright, D. I., Kaĭmanovich, V. A. and Woess, W. (1994). Random walks on the affine group of local fields and of homogeneous trees. Ann. Inst. Fourier (Grenoble) 44 1243–1288. · Zbl 0809.60010
[7] Doob, J. L. (1953). Stochastic Processes . Wiley, New York. · Zbl 0053.26802
[8] Élie, L. (1982). Comportement asymptotique du noyau potentiel sur les groupes de Lie. Ann. Sci. École Norm. Sup. (4) 15 257–364. · Zbl 0509.60070
[9] Grincevičius, A. K. (1975). Limit theorem for products of random linear transformations of the line. Litovsk. Mat. Sb. 15 61–77, 241. · Zbl 0362.60018
[10] Hirsch, W. M. (1965). A strong law for the maximum cumulative sum of independent random variables. Comm. Pure Appl. Math. 18 109–137. · Zbl 0135.19205
[11] Kesten, H. (1973). Random difference equations and renewal theory for products of random matrices. Acta Math. 131 207–248. · Zbl 0291.60029
[12] Kiefer, J. and Wolfowitz, J. (1956). On the characteristics of the general queueing process, with applications to random walk. Ann. Math. Statist. 27 147–161. · Zbl 0070.36602
[13] Le Page, É. (1983). Théorèmes de renouvellement pour les produits de matrices aléatoires. Équations aux différences aléatoires. In Séminaires de probabilités Rennes 1983 . Univ. Rennes I.
[14] Le Page, É. and Peigné, M. (1997). A local limit theorem on the semi-direct product of \(\RR^ *+\) and \(\RR^ d\). Ann. Inst. H. Poincaré Probab. Statist. 33 223–252. · Zbl 0881.60018
[15] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability . Springer, Berlin. · Zbl 0925.60001
[16] Spitzer, F. (1964). Principles of Random Walk . Van Nostrand, Princeton. · Zbl 0119.34304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.