×

Eliminating transformations for nuisance parameters in linear model. (English) Zbl 1046.62069

Summary: The regular linear model in which the vector of the first order parameters is divided into two parts: the vector of the useful parameters and the vector of the nuisance parameters, is considered. We examine eliminating transformations which eliminate the nuisance parameters without loss of information on the useful parameters and on the variance components.

MSC:

62J05 Linear regression; mixed models
62H12 Estimation in multivariate analysis
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] Kubáček L., Kubáčková L., Volaufová J.: Statistical Models with Linear Structures. Vieda, Publishing House of the Slovak Academy of Sciences, Bratislava, 1995.
[2] Kubáčková L., Kubáček L.: Elimination Transformation of an Observation Vector preserving Information on the First and Second Order Parameters. Technical Report, No 11, 1990, Institute of Geodesy, University of Stuttgart, 1-71.
[3] Kubáček L., Kubáčková L.: Statistika a metrologie. Vydavatelství UP, Olomouc, 2000.
[4] Kunderová P.: Locally best and uniformly best estimators in linear model with nuisance parameters. Tatra Mt. Math. Publ. 22 (2001), 27-36. · Zbl 1001.62021
[5] Kubáček L.: Two stage regression models with constraints. Math. Slovaca 43 (1993), 643-658. · Zbl 0793.62036
[6] Kubáček L.: Štatistické modely pripojovacích meraní. In. Celoslovenský seminár ”Modernizácia geodetických základov Slovenska”, zborník prednášok (ed. M. Petrovič), VÚGK Bratislava, 1993, 28-40.
[7] Kubáček L., Kubáčková L.: Dvouetapové sítě s podmínkami typu I a II. In. Sborník příspěvků a spolupracovníků k devadesátinám pana profesora Josefa Vykutila. (Ed. D. Dušátko), Praha - Brno, Vojenský zeměpisný ústav Praha 2002, 58-72.
[8] Kubáčková L.: Foundations of Experimental Data Analysis. CRC-Press, Boca Raton-Ann Arbor-London-Tokyo, 1992. · Zbl 0875.62016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.