Glowinski, Roland; Rappaz, Jacques Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. (English) Zbl 1046.76002 M2AN, Math. Model. Numer. Anal. 37, No. 1, 175-186 (2003). Summary: The goal is to establish a priori and a posteriori error estimates for numerical approximations of some nonlinear elliptic problems arising in glaciology. The stationary motion of a glacier is given by a non-Newtonian fluid flow model which becomes, in a first two-dimensional approximation, the so-called infinite parallel-sided slab model. The approximation of this model is made by a finite element method with piecewise polynomial functions of degree 1. Numerical results show that the obtained theoretical results are almost optimal. Cited in 84 Documents MSC: 76A05 Non-Newtonian fluids 76M10 Finite element methods applied to problems in fluid mechanics 65N15 Error bounds for boundary value problems involving PDEs 86A40 Glaciology Keywords:finite element method; a priori error estimates; a posteriori error estimates PDFBibTeX XMLCite \textit{R. Glowinski} and \textit{J. Rappaz}, M2AN, Math. Model. Numer. Anal. 37, No. 1, 175--186 (2003; Zbl 1046.76002) Full Text: DOI Numdam EuDML References: [1] J. Baranger and H. El Amri . Estimateurs a posteriori d’erreurs pour le calcul adaptatif d’écoulements quasi-newtoniens . RAIRO Modél. Math. Anal. Numér. 25 ( 1991 ) 31 - 48 . Numdam | Zbl 0712.76068 · Zbl 0712.76068 [2] J.W. Barrett and W. Liu , Finite element approximation of degenerate quasi-linear elliptic and parabolic problems . Pitman Res. Notes Math. Ser. 303 ( 1994 ) 1 - 16 . In Numerical Analysis 1993. Zbl 0798.65092 · Zbl 0798.65092 [3] H. Blatter , Velocity and stress fields in grounded glacier: a simple algorithm for including deviator stress gradients . J. Glaciol. 41 ( 1995 ) 333 - 344 . [4] P.G. Ciarlet , The finite element method for elliptic problems . North-Holland, Stud. Math. Appl. 4 ( 1978 ). MR 520174 | Zbl 0383.65058 · Zbl 0383.65058 [5] J. Colinge and J. Rappaz , A strongly non linear problem arising in glaciology . ESAIM: M2AN 33 ( 1999 ) 395 - 406 . Numdam | Zbl 0946.65115 · Zbl 0946.65115 · doi:10.1051/m2an:1999122 [6] R. Glowinski and A. Marrocco , Sur l’approximation par éléments finis d’ordre un, et la résolution par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires . Anal. Numér. 2 ( 1975 ) 41 - 76 . Numdam | Zbl 0368.65053 · Zbl 0368.65053 [7] P. Hild , I.R. Ionescu , T. Lachand-Robert and I. Rosca , The blocking of an inhomogeneous Bingham fluid . Applications to landslides. ESAIM: M2AN 36 ( 2002 ) 1013 - 1026 . Numdam | Zbl 1057.76004 · Zbl 1057.76004 · doi:10.1051/m2an:2003003 [8] W. Liu and N. Yan . Quasi-norm local error estimators for \(p\)-Laplacian . SIAM J. Numer. Anal. 39 ( 2001 ) 100 - 127 . Zbl 1001.65119 · Zbl 1001.65119 · doi:10.1137/S0036142999351613 [9] A. Reist , Résolution numérique d’un problème à frontière libre issu de la glaciologie . Diploma thesis, Department of Mathematics, EPFL, Lausanne, Switzerland ( 2001 ). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.