zbMATH — the first resource for mathematics

Motion of a variable body in an ideal liquid. (English. Russian original) Zbl 1046.76008
J. Appl. Math. Mech. 65, No. 4, 579-587 (2001); translation from Prikl. Mat. Mekh. 65, No. 4, 592-601 (2001).
The authors study the motion of a deformable body in an infinite ideal fluid which performs irrotational motion and rests at infinity. Under some assumptions on the variation of body form and mass geometry, the equations of motion are derived and their properties are investigated. It is shown that for unequal added masses the body can move from one position to an other position solely due to the change in mass geometry.

76B99 Incompressible inviscid fluids
[1] Liouville, J.: Développements sur un chapitre de la ”mechanique” de Poisson. J. math. Pures et appl. 3, 1-25 (1858)
[2] Route, E. J.: Dynamics of a system of rigid bodies. (1882)
[3] Četayev, N.: Sur LES équations de Poincaré. C. R. Acad. sci. Paris 185, 1577-1578 (1927) · JFM 54.0830.07
[4] Kirchoff, G.: Vorlesungen über mathematiche physik. Mechanik. (1897)
[5] Lamb, H.: Hydrodynamics. (1945) · Zbl 0828.01012
[6] Kochin, N. Ye.; Kibel’, I. A.; Roze, N. V.: Theoretical hydromechanics. (1955) · Zbl 0121.20301
[7] Kozlov, V. V.: General theory of vortices. Izd.. (1998) · Zbl 1054.37514
[8] Horn, R. A.; Johnson, Ch.R.: Matrix analysis. (1986)
[9] Lavrent’yev, M. A.; Lavrent’yev, M. M.: A principle for the generation of a tractive force for motion. Zh. prikl. Mekh. tekh. Fiz. 4, 3-9 (1962)
[10] Lavrent’yev, M. A.; Shabat, B. V.: Problems of hydrodynamics and their mathematical models. (1973)
[11] Kuznetsov, V. M.; Lugovtsov, B. A.; Sher, Y. N.: On the motive mechanism of snakes and fish. Arch. rath. Mech. analysis 25, 367-387 (1967) · Zbl 0153.55602
[12] Rashevskii, P. K.: The connectability of any two points of an entirely non-holonomic space by a permissible line. Uch. zap. Mosk. ped. Inst. im. K. liebknecht, ser. Fiz.-mat. Nauk 2, 83-94 (1938)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.