×

The fundamental lemma of Jacquet and Ye in positive characteristic. (Le lemme fondamental de Jacquet et Ye en caractéristique positive.) (French) Zbl 1047.11517

In the trace formula approach to the lifting problems of automorphic representations of reductive groups, the matching of local orbital integrals has been reduced to that for the unit element of the Hecke algebra related to relevant groups, which is usually called the fundamental lemma. In general, the fundamental lemma is one of the most difficult open problems in the trace formula approach to the theory of automorphic representations.
The fundamental lemma of Jacquet and Ye is the one in the relative trace formula approach to the quadratic base change problem for \(\text{GL}(n)\) [H. M. Jacquet and Y. Ye, Bull. Soc. Math. Fr. 120, 263–295 (1992; Zbl 0785.11032)]. An equivalent formulation of the fundamental lemma of Jacquet and Ye is an identity of two distributions, called Jacquet and Ye’s conjecture. One of the distributions is of generalized Kloosterman integral type and is defined over \(\text{GL}(n,E)\), and the other distribution is of relative Kloosterman integral type and is defined over \(\text{GL}(n,F)\), where \(E/F\) is a quadratic extension. Jacquet and Ye verified their conjecture for \(\text{GL}(2)\) and \(\text{GL}(3)\) over a local non-Archimedean field of characteristic zero.
The aim of the paper under review is to prove the above conjecture of Jacquet and Ye for \(\text{GL}(n)\) over local fields of positive characteristic. The main idea is to interpret the function-field analogies of the distributions of Kloosterman type defined by Jacquet and Ye as the trace of the Frobenius endomorphism over the \(l\)-adic cohomology of a certain algebraic variety, in the sense of Grothendieck. The conjectural identity of Jacquet and Ye in the function-field case becomes a certain quasi-invariant property of the trace with respect to a simply defined involution. It is a beautiful geometric argument.
The original conjecture of Jacquet and Ye over local fields of characteristic zero is still open for \(\text{GL}(n)\), \(n\geq 4\).

MSC:

11F70 Representation-theoretic methods; automorphic representations over local and global fields
14F20 Étale and other Grothendieck topologies and (co)homologies

Citations:

Zbl 0785.11032
Full Text: DOI

References:

[1] A. A. Beĭ linson, J. Bernstein, and P. Deligne, Faisceaux pervers , Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5-171. · Zbl 0536.14011
[2] P. Deligne, “Applications de la formule des traces aux sommes trigonométrique” , Cohomologie Étale, Seminaire de Géométrie Algèbrique du Bois-Marie (SGA 4 1/2), Lecture Notes in Math., vol. 569, Springer-Verlag, Berlin, 1977, pp. 168-232. · Zbl 0349.10031
[3] Solomon Friedberg, Poincaré series for \(\mathrm GL(n)\): Fourier expansion, Kloosterman sums, and algebreo-geometric estimates , Math. Z. 196 (1987), no. 2, 165-188. · Zbl 0612.10020 · doi:10.1007/BF01163653
[4] Alexander Grothendieck, Formule de Lefschetz et rationalité des fonctions \(L\) , Séminaire Bourbaki, Vol. 9, Soc. Math. France, Paris, 1995, Exp. No. 279, 41-55.
[5] Hervé Jacquet and Yangbo Ye, Une remarque sur le changement de base quadratique , C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 11, 671-676. · Zbl 0715.11026
[6] Hervé Jacquet and Yangbo Ye, Relative Kloosterman integrals for \(\mathrm GL(3)\) , Bull. Soc. Math. France 120 (1992), no. 3, 263-295. · Zbl 0785.11032
[7] Jean-Pierre Jouanolou, Théorèmes de Bertini et applications , Progress in Mathematics, vol. 42, Birkhäuser Boston Inc., Boston, MA, 1983. · Zbl 0519.14002
[8] Nicholas M. Katz, Sommes exponentielles , Astérisque, vol. 79, Société Mathématique de France, Paris, 1980. · Zbl 0469.12007
[9] G. Laumon, Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil , Inst. Hautes Études Sci. Publ. Math. (1987), no. 65, 131-210. · Zbl 0641.14009 · doi:10.1007/BF02698937
[10] Glenn Stevens, Poincaré series on \(\mathrm GL(r)\) and Kloostermann sums , Math. Ann. 277 (1987), no. 1, 25-51. · Zbl 0597.12017 · doi:10.1007/BF01457276
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.