zbMATH — the first resource for mathematics

Differential coherence of unit-root \(F\)-isocrystals. (Cohérence différentielle des \(F\)-isocristaux unités.) (French. Abridged English version) Zbl 1047.14009
Let \({\mathcal P}\) be a smooth formal scheme over a mixed characteristic complete valuation ring \({\mathcal V}\), \(X\) a smooth subscheme of the special fiber \(P\) of the structural morphism \({\mathcal P}\to{\mathcal V}\), \(T\) a divisor of \(P\) such that \(T_X:=T\cap X\) is a divisor of \(X\), and \({\mathcal D}^+_{\mathcal P}\) the weak completion of the sheaf of differential operators of \({\mathcal P}\). The author proves that the unit-root \(F\)-isocrystals of \(X\setminus T_X\) overconvergent along \(T_X\) are coherent over \({\mathcal D}^+_{{\mathcal P},\mathbb Q}\).

14F30 \(p\)-adic cohomology, crystalline cohomology
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
Full Text: DOI
[1] Berthelot, P., Cohérence différentielle des algèbres de fonctions surconvergentes, C. R. acad. sci. Paris Sér. I math., 323, 1, 35-40, (1996) · Zbl 0871.14014
[2] Berthelot, P., \(D\)-modules arithmétiques. I. opérateurs différentiels de niveau fini, Ann. sci. école norm. sup. (4), 29, 2, 185-272, (1996) · Zbl 0886.14004
[3] P. Berthelot, Cohomologie rigide et cohomologie rigide à support propre. Première partie, Prépublication IRMAR 96-03, Université de Rennes, 1996
[4] Berthelot, P., Introduction à la théorie arithmétique des \(D\)-modules, (), 1-80 · Zbl 1098.14010
[5] D. Caro, Fonctions L associées aux \(D\)-modules arithmétiques. Cas des courbes, Preprint, 1, Dipartimento di Matematica pura ed applicata di Padova, 2003
[6] D. Caro, Fonctions L associées aux \(D\)-modules arithmétiques, Thèse, Université de Rennes 1, 2002
[7] de Jong, A.J., Smoothness, semi-stability and alterations, Inst. hautes études sci. publ. math., 83, 51-93, (1996) · Zbl 0916.14005
[8] C. Huyghe, Construction et étude de la Transformée de Fourier pour les \(D\)-modules arithmétiques, Thèse, Université de Rennes 1, 1995
[9] Raynaud, M.; Gruson, L., Critères de platitude et de projectivité. techniques de « platification » d’un module, Invent. math., 13, 1-89, (1971) · Zbl 0227.14010
[10] Tsuzuki, N., Morphisms of F-isocrystals and the finite monodromy theorem for unit-root F-isocrystals, Duke math. J., 111, 3, 385-418, (2002) · Zbl 1055.14022
[11] Virrion, A., Dualité locale et holonomie pour LES \(D\)-modules arithmétiques, Bull. soc. math. France, 128, 1, 1-68, (2000) · Zbl 0955.14015
[12] A. Virrion, Trace et dualité relative pour les \(D\)-modules arithmétiques. I^{ère} partie : théorème de dualité relative et morphisme d’adjonction, Prépublication IRMAR 00-27, Université de Rennes 1, 2000
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.