×

zbMATH — the first resource for mathematics

A local characterization of simply-laced crystals. (English) Zbl 1047.17007
This paper provides a simple list of axioms that characterize the crystals that are crystals of integrable highest weight modules for simply-laced quantum affine Kac-Moody algebras.

MSC:
17B37 Quantum groups (quantized enveloping algebras) and related deformations
05E15 Combinatorial aspects of groups and algebras (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arkady Berenstein and Andrei Zelevinsky, Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math. 143 (2001), no. 1, 77 – 128. · Zbl 1061.17006 · doi:10.1007/s002220000102 · doi.org
[2] Anthony Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 29, Springer-Verlag, Berlin, 1995. · Zbl 0808.17004
[3] Peter Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math. 116 (1994), no. 1-3, 329 – 346. · Zbl 0805.17019 · doi:10.1007/BF01231564 · doi.org
[4] Peter Littelmann, Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995), no. 3, 499 – 525. · Zbl 0858.17023 · doi:10.2307/2118553 · doi.org
[5] Peter Littelmann, Crystal graphs and Young tableaux, J. Algebra 175 (1995), no. 1, 65 – 87. · Zbl 0831.17004 · doi:10.1006/jabr.1995.1175 · doi.org
[6] P. Littelmann, Cones, crystals, and patterns, Transform. Groups 3 (1998), no. 2, 145 – 179. · Zbl 0908.17010 · doi:10.1007/BF01236431 · doi.org
[7] Seok-Jin Kang, Masaki Kashiwara, Kailash C. Misra, Tetsuji Miwa, Toshiki Nakashima, and Atsushi Nakayashiki, Affine crystals and vertex models, Infinite analysis, Part A, B (Kyoto, 1991) Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp. 449 – 484. · Zbl 0925.17005
[8] Masaki Kashiwara and Toshiki Nakashima, Crystal graphs for representations of the \?-analogue of classical Lie algebras, J. Algebra 165 (1994), no. 2, 295 – 345. · Zbl 0808.17005 · doi:10.1006/jabr.1994.1114 · doi.org
[9] Masaki Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), no. 2, 383 – 413. · Zbl 0794.17009 · doi:10.1215/S0012-7094-94-07317-1 · doi.org
[10] Masaki Kashiwara, On crystal bases, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 155 – 197. · Zbl 0851.17014
[11] Masaki Kashiwara, Similarity of crystal bases, Lie algebras and their representations (Seoul, 1995) Contemp. Math., vol. 194, Amer. Math. Soc., Providence, RI, 1996, pp. 177 – 186. · Zbl 0874.17028 · doi:10.1090/conm/194/02393 · doi.org
[12] J. R. Stembridge, Combinatorial models for Weyl characters, Advances in Math. 168 (2002), 96-131. · Zbl 1035.22011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.