Drápal, Aleš Conjugacy closed loops and their multiplication groups. (English) Zbl 1047.20049 J. Algebra 272, No. 2, 838-850 (2004). Author’s abstract: A loop is said to be conjugacy closed if the sets \(\{L_x:x\in Q\}\) and \(\{R_x:x\in Q\}\) are closed under conjugation. Let \(L\) and \(R\) be the left and right multiplication groups of \(Q\) respectively, and let \(I(Q)\) be its inner mapping group. If \(Q\) is conjugacy closed then there exist epimorphisms \(L\to I(Q)\) and \(R\to I(Q)\) that are termined by \(L_x\mapsto R^{-1}_xL_x\) and \(R_x\mapsto L^{-1}_xR_x\). These epimorphisms are used to expose various structural properties of \(M(Q)=LR\). Reviewer: Miklos Csikós (Gödöllö) Cited in 1 ReviewCited in 18 Documents MSC: 20N05 Loops, quasigroups Keywords:conjugacy closed loops; multiplication groups; nuclei; translations PDFBibTeX XMLCite \textit{A. Drápal}, J. Algebra 272, No. 2, 838--850 (2004; Zbl 1047.20049) Full Text: DOI References: [1] Basarab, A. S., Klass LK-lup, Mat. Issled., 120, 3-7 (1991) [2] Belousov, V. D., Osnovy Teorii Kvazigrupp i Lup (1967), Nauka: Nauka Moskva [3] Bruck, R. H., A Survey of Binary Systems (1971), Springer-Verlag · Zbl 0206.30301 [4] Drápal, A., Multiplication groups of finite loops that fix at most two points, J. Algebra, 235, 154-175 (2001) · Zbl 0972.20039 [5] Drápal, A., Multiplication groups of loops and projective semilinear transformations in dimension two, J. Algebra, 251, 256-278 (2002) · Zbl 1009.20079 [6] Drápal, A., Orbits of inner mapping groups, Monatsh. Math., 134, 191-206 (2002) · Zbl 1005.20051 [7] Goodaire, E. G.; Robinson, D. A., A class of loops which are isomorphic to all loop isotopes, Canad. J. Math., 34, 662-672 (1982) · Zbl 0467.20052 [8] Goodaire, E. G.; Robinson, D. A., Some special conjugacy closed loops, Canad. Math. Bull., 33, 73-78 (1990) · Zbl 0661.20046 [9] M.K. Kinyon, K. Kunen, J.D. Phillips, Diassociativity in conjugacy closed loops, Comm. Algebra, in press; M.K. Kinyon, K. Kunen, J.D. Phillips, Diassociativity in conjugacy closed loops, Comm. Algebra, in press · Zbl 1077.20076 [10] Kunen, K., The structure of conjugacy closed loops, Trans. Amer. Math. Soc., 352, 2889-2911 (2000) · Zbl 0962.20048 [11] Nagy, P.; Strambach, K., Loops as invariant sections in groups, and their geometry, Canad. J. Math., 46, 1027-1056 (1994) · Zbl 0814.20055 [12] Soikis, L. R., O specialnych lupach, (Belousov, V. D., Voprosy Teorii Kvazigrupp i Lup (1970), Akademia Nauk Moldav. SSR: Akademia Nauk Moldav. SSR Kishinev), 122-131 [13] Wilson, E. L., A class of loops with the isotopy-isomorphy property, Canad. J. Math., 18, 589-592 (1966) · Zbl 0139.24702 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.