The structure of disjoint iteration groups on the circle. (English) Zbl 1047.37024

Summary: The aim of the paper is to investigate the structure of disjoint iteration groups on the unit circle \(\mathbb S^1\), that is, families \(\mathcal F = \{F^v: \mathbb S^1 \rightarrow \mathbb S\), \(v\in V\}\) of homeomorphisms such that \(F^{v_{1}}\circ F^{v_2} = F^{v_1 + v_2}\), \(v_1, v_2 \in V\), and each \(F^v\) either is the identity mapping or has no fixed point (\((V, +)\) is an arbitrary \(2\)-divisible nontrivial (i.e., card \(V > 1\)) abelian group).


37E10 Dynamical systems involving maps of the circle
20F38 Other groups related to topology or analysis
30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable
37E45 Rotation numbers and vectors
39B12 Iteration theory, iterative and composite equations
Full Text: DOI EuDML


[1] L. Alsedà, J. Llibre and M. Misiurewicz: Combinatorial Dynamics and Entropy in Dimension One. Advanced Series in Nonlinear Dynamics, 5. World Scientific Publishing Co. Inc., River Edge, 1993. · Zbl 0843.58034
[2] M. Bajger: On the structure of some flows on the unit circle. Aequationes Math. 55 (1998), 106-121. · Zbl 0891.39017
[3] M. Bajger and M. C. Zdun: On rational flows of continuous functions. Iteration Theory (Batschuns, 1992), World Sci. Publishing, River Edge, 1996, pp. 265-276. · Zbl 0918.58061
[4] L. S. Block and W. A. Coppel: Dynamics in One Dimension. Lecture Notes in Mathematics, 1513. Springer-Verlag, Berlin, 1992.
[5] N. Bourbaki: Éléments de mathématique. Topologie générale. Hermann, Paris, 1971. · Zbl 0249.54001
[6] K. Ciepliński: On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups. Publ. Math. Debrecen 55 (1999), 363-383. · Zbl 0935.39010
[7] K. Ciepliński: On conjugacy of disjoint iteration groups on the unit circle. Ann. Math. Sil. 13 (1999), 103-118. · Zbl 0945.39006
[8] K. Ciepliński: The rotation number of the composition of homeomorphisms. Rocznik Nauk.-Dydakt. AP w Krakowie. Prace Mat. 17 (2000), 83-87. · Zbl 1193.37057
[9] K. Ciepliński: Topological conjugacy of disjoint flows on the circle. Bull. Korean Math. Soc. 39 (2002), 333-346. · Zbl 1002.37020
[10] K. Ciepliński and M. C. Zdun: On a system of Schröder equations on the circle. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 1883-1888. · Zbl 1062.39023
[11] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai: Ergodic Theory. Grundlehren der Mathematischen Wissenschaften, 245. Springer-Verlag, New York, 1982. · Zbl 0493.28007
[12] Z. Nitecki: Differentiable Dynamics. An Introduction to the Orbit Structure of Diffeomorphisms. The M.I.T. Press Cambridge, Massachusetts-London, 1971. · Zbl 0246.58012
[13] C. T. C. Wall: A Geometric Introduction to Topology. Addison-Wesley Publishing Co., Reading, Massachusetts-London-Don Mills, 1972. · Zbl 0261.55001
[14] P. Walters: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982. · Zbl 0475.28009
[15] M. C. Zdun: On embedding of homeomorphisms of the circle in a continuous flow. Iteration theory and its functional equations (Lochau, 1984). Lecture Notes in Math., 1163, Springer, Berlin, 1985, pp. 218-231. · Zbl 0616.54037
[16] M. C. Zdun: On the embeddability of commuting functions in a flow. Selected topics in functional equations and iteration theory (Graz, 1991). Grazer Math. Ber., 316, Karl-Franzens-Univ. Graz, Graz, 1992, pp. 201-212. · Zbl 0797.39007
[17] M. C. Zdun: On the orbits of disjoint groups of continuous functions. Rad. Mat. 8 (1992/96), 95-104. · Zbl 0955.39007
[18] M. C. Zdun: The structure of iteration groups of continuous functions. Aequationes Math. 46 (1993), 19-37. · Zbl 0801.39005
[19] M. C. Zdun: On some invariants of conjugacy of disjoint iteration groups. Results Math. 26 (1994), 403-410. · Zbl 0830.39009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.