Brasil, Aldir jun.; Colares, A. Gervasio; Palmas, Oscar Complete spacelike hypersurfaces with constant mean curvature in the de Sitter space: a gap theorem. (English) Zbl 1047.53031 Ill. J. Math. 47, No. 3, 847-866 (2003). The authors study the topology and geometry of space-like surfaces with constant mean curvature in de Sitter space. Their result is a Lorentzian analogue of a theorem of H. Alencar and M. P. do Carmo [Proc. Am. Math. Soc. 120, 1223–1229 (1994; Zbl 0802.53017)] about hypersurfaces in the sphere. They give a lot of explicit examples of such hypersurfaces. Reviewer: Jean-François Quint (Villeurbanne) Cited in 1 ReviewCited in 20 Documents MSC: 53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.) 53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics 53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature Keywords:de Sitter space; subvariety; curvature Citations:Zbl 0802.53017 × Cite Format Result Cite Review PDF