Groeneboom, P.; Lopuhaä, H. P.; de Wolf, P. P. Kernel-type estimators for the extreme value index. (English) Zbl 1047.62046 Ann. Stat. 31, No. 6, 1956-1995 (2003). The paper deals with the estimation of the shape parameter \(\gamma\) of the generalized extreme value distribution. The parameter \(\gamma\) is known also as the extreme value index or the tail index. The authors propose kernel-type estimators which can be used for estimating the extreme value index over the whole (positive and negative) range. A number of results on consistency and asymptotic normality of the estimators are presented. The obtained kernel-type estimators are compared with other known estimators. The automatic choice of the bandwidth is also discussed. Reviewer: Wiesław Dziubdziela (Kielce) Cited in 1 ReviewCited in 19 Documents MSC: 62G32 Statistics of extreme values; tail inference 62G20 Asymptotic properties of nonparametric inference 62G05 Nonparametric estimation Keywords:extreme value index; adaptive estimation; second order parameter estimation × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Beirlant, J., Vynckier, P. and Teugels, J. L. (1996). Excess functions and estimation of the extreme-value index. Bernoulli 2 293–318. · Zbl 0870.62019 · doi:10.2307/3318416 [2] Csörgő, M., Csörgő, S., Horváth, L. and Mason, D. (1986). Weighted empirical and quantile processes. Ann. Probab. 14 31–85. JSTOR: · Zbl 0589.60029 · doi:10.1214/aop/1176992617 [3] Csörgő, S., Deheuvels, P. and Mason, D. (1985). Kernel estimates of the tail index of a distribution. Ann. Statist. 13 1050–1077. JSTOR: · Zbl 0588.62051 · doi:10.1214/aos/1176349656 [4] Csörgő, S. and Viharos, L. (1997). Asymptotic normality of least-squares estimators of tail indices. Bernoulli 3 351–370. · Zbl 1066.62526 · doi:10.2307/3318597 [5] Danielsson, J., de Haan, L., Peng, L. and de Vries, C. G. (2001). Using a bootstrap method to choose the sample fraction in tail index estimation. J. Multivariate Anal. 76 226–248. · Zbl 0976.62044 · doi:10.1006/jmva.2000.1903 [6] Dekkers, A. L. M. and de Haan, L. (1993). Optimal choice of sample fraction in extreme-value estimation. J. Multivariate Anal. 47 173–195. · Zbl 0797.62016 · doi:10.1006/jmva.1993.1078 [7] Dekkers, A. L. M., Einmahl, J. H. J. and de Haan, L. (1989). A moment estimator for the index of an extreme-value distribution. Ann. Statist. 17 1833–1855. JSTOR: · Zbl 0701.62029 · doi:10.1214/aos/1176347397 [8] Draisma, G., de Haan, L., Peng, L. and Pereira, T. T. (1999). A bootstrap-based method to achieve optimality in estimating the extreme-value index. Extremes 2 367–404. · Zbl 0972.62014 · doi:10.1023/A:1009900215680 [9] Drees, H. (1995). Refined Pickands estimators of the extreme value index. Ann. Statist. 23 2059–2080. · Zbl 0883.62036 · doi:10.1214/aos/1034713647 [10] Drees, H. and Kaufmann, E. (1998). Selecting of the optimal sample fraction in univariate extreme-value estimation. Stochastic Process. Appl. 75 149–172. · Zbl 0926.62013 · doi:10.1016/S0304-4149(98)00017-9 [11] Fraga Alves, M. I., de Haan, L. and Lin, T. (2003). Estimation of the parameter controlling the speed of convergence in extreme value theory. Math. Methods Statist. [12] Geluk, J. L. and de Haan, L. (1987). Regular Variation , Extensions and Tauberian Theorems . Mathematical Centre Tracts 40 . Centre for Mathematics and Computer Science, Amsterdam. · Zbl 0624.26003 [13] Gomes, M. I., de Haan, L. and Peng, L. (2003). Semi-parametric estimation of the second order parameter—asymptotic and finite sample behaviour. Extremes . · Zbl 1039.62027 · doi:10.1023/A:1025128326588 [14] de Haan, L. and Pereira, T. (1999). Estimating the index of a stable distribution. Statist. Probab. Lett. 41 39–55. · Zbl 0946.62038 · doi:10.1016/S0167-7152(98)00120-5 [15] Hall, P. (1990). Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems. J. Multivariate Anal. 32 177–203. · Zbl 0722.62030 · doi:10.1016/0047-259X(90)90080-2 [16] Hall, P. and Welsh, A. H. (1984). Best attainable rates of convergence for estimates of parameters of regular variation. Ann. Statist. 12 1079–1084. JSTOR: · Zbl 0539.62048 · doi:10.1214/aos/1176346723 [17] Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. Ann. Statist. 3 1163–1174. · Zbl 0323.62033 · doi:10.1214/aos/1176343247 [18] Kratz, M. and Resnick, S. I. (1996). The QQ-estimator and heavy tails. Comm. Statist. Stochastic Models 12 699–724. · Zbl 0887.62025 · doi:10.1080/15326349608807407 [19] Mason, D. M. (1982). Some characterizations of almost sure bounds for weighted multidimensional empirical distributions and a Glivenko–Cantelli theorem for sample quantiles. Z. Wahrsch. Verw. Gebiete 59 505–513. · Zbl 0482.60029 · doi:10.1007/BF00532806 [20] Matthys, G. and Beirlant, J. (2000). Adaptive threshold selection in tail index estimation. In Extremes and Integrated Risk Management (P. Embrechts, ed.) 37–49. Risk Books, London. [21] Omey, E. and Willekens, E. (1987). \(\pi\)-variation with remainder. J. London Math. Soc. (2) 37 105–118. · Zbl 0612.26001 · doi:10.1112/jlms/s2-37.121.105 [22] Pickands, J., III (1975). Statistical inference using extreme order statistics. Ann. Statist. 3 119–131. JSTOR: · Zbl 0312.62038 · doi:10.1214/aos/1176343003 [23] Schultze, J. and Steinebach, J. (1996). On least squares estimates of an exponential tail coefficient. Statist. Decisions 14 353–372. · Zbl 0893.62023 [24] Smith, R. L. (1987). Estimating tails of probability distributions. Ann. Statist. 15 1174–1207. JSTOR: · Zbl 0642.62022 · doi:10.1214/aos/1176350499 [25] Wellner, J. A. (1978). Limit theorems for the ratio of the empirical distribution function to the true distribution function. Z. Wahrsch. Verw. Gebiete 45 73–88. · Zbl 0382.60031 · doi:10.1007/BF00635964 [26] de Wolf, P. P. (1999). Estimating the extreme value index–Tale of tails. Ph.D. thesis, Delft Univ. Technology. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.