×

zbMATH — the first resource for mathematics

A finite element method for domain decomposition with non-matching grids. (English) Zbl 1047.65099
The authors propose and analyze a method for handling interfaces between non-matching grids based on an approach suggested by J. Nitsche [Abh. Math. Semin. Univ. Hamb. 36, 9–15 (1971; Zbl 0229.65079)] for the approximation of Dirichlet boundary conditions. For simplicity, they consider the model Poisson problem and give both a priori and a posteriori error estimates. They also give numerical results obtained with the method.

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] J.-P. Aubin , Approximation of Elliptic Boundary-Value Problem . Wiley ( 1972 ). MR 478662 | Zbl 0248.65063 · Zbl 0248.65063
[2] D. Arnold , An interior penalty finite element method with discontinuous elements . SIAM J. Numer. Anal. 19 ( 1982 ) 742 - 760 . Zbl 0482.65060 · Zbl 0482.65060
[3] C. Baiocchi , F. Brezzi and L.D. Marini , Stabilization of Galerkin methods and applications to domain decomposition , in Future Tendencies in Computer Science, Control and Applied Mathematics, A. Bensoussan and J.-P. Verjus Eds., Springer ( 1992 ) 345 - 355 .
[4] J.C. Barbosa and T.J.R. Hughes , Boundary Lagrange multipliers in finite element methods: error analysis in natural norms . Numer. Math. 62 ( 1992 ) 1 - 15 . Article | Zbl 0765.65102 · Zbl 0765.65102
[5] J.W. Barrett and C.M. Elliot , Finite element approximation of the Dirichlet problem using the boundary penalty method . Numer. Math. 49 ( 1986 ) 343 - 366 . Article | Zbl 0614.65116 · Zbl 0614.65116
[6] R. Becker and P. Hansbo , Discontinuous Galerkin methods for convection-diffusion problems with arbitrary Péclet number , in Numerical Mathematics and Advanced Applications: Proceedings of the 3rd European Conference, P. Neittaanmäki, T. Tiihonen and P. Tarvainen Eds., World Scientific ( 2000 ) 100 - 109 . Zbl 0968.65084 · Zbl 0968.65084
[7] R. Becker and R. Rannacher , A feed-back approach to error control in finite element methods: basic analysis and examples . East-West J. Numer. Math. 4 ( 1996 ) 237 - 264 . Zbl 0868.65076 · Zbl 0868.65076
[8] C. Bernadi , Y. Maday and A. Patera , A new nonconforming approach to domain decomposition: the mortar element method , in Nonlinear Partial Differential Equations and Their Application, H. Brezis and J.L. Lions Eds., Pitman ( 1989 ). Zbl 0797.65094 · Zbl 0797.65094
[9] F. Brezzi , L.P. Franca , D. Marini and A. Russo , Stabilization techniques for domain decomposition methods with non-matching grids , IAN-CNR Report N. 1037, Istituto di Analisi Numerica Pavia.
[10] J. Freund and R. Stenberg , On weakly imposed boundary conditions for second order problems , in Proceedings of the Ninth Int. Conf. Finite Elements in Fluids, M. Morandi Cecchi et al. Eds., Venice ( 1995 ) 327 - 336 .
[11] J. Freund , Space-time finite element methods for second order problems: an algorithmic approach . Acta Polytech. Scand. Math. Comput. Manage. Eng. Ser. 79 ( 1996 ). MR 1422305 | Zbl 0861.65083 · Zbl 0861.65083
[12] B. Heinrich and S. Nicaise , Nitsche mortar finite element method for transmission problems with singularities . SFB393-Preprint 2001 - 10 , Technische Universität Chemnitz ( 2001 ). MR 1975269 | Zbl 1027.65149 · Zbl 1027.65149
[13] B. Heinrich and K. Pietsch , Nitsche type mortaring for some elliptic problem with corner singularities . Computing 68 ( 2002 ) 217 - 238 . Zbl 1002.65124 · Zbl 1002.65124
[14] C. Johnson and P. Hansbo , Adaptive finite element methods in computational mechanics . Comput. Methods Appl. Mech. Engrg. 101 ( 1992 ) 143 - 181 . Zbl 0778.73071 · Zbl 0778.73071
[15] P. Le Tallec and T. Sassi , Domain decomposition with nonmatching grids: augmented Lagrangian approach . Math. Comp. 64 ( 1995 ) 1367 - 1396 . Zbl 0849.65087 · Zbl 0849.65087
[16] P.L. Lions , On the Schwarz alternating method III: a variant for nonoverlapping subdomains , in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T.F. Chan, R. Glowinski, J. Periaux and O.B. Widlund Eds., SIAM ( 1989 ) 202 - 223 . Zbl 0704.65090 · Zbl 0704.65090
[17] J. Nitsche , Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind . Abh. Math. Sem. Univ. Hamburg 36 ( 1971 ) 9 - 15 . Zbl 0229.65079 · Zbl 0229.65079
[18] R. Stenberg , On some techniques for approximating boundary conditions in the finite element method . J. Comput. Appl. Math. 63 ( 1995 ) 139 - 148 . Zbl 0856.65130 · Zbl 0856.65130
[19] R. Stenberg , Mortaring by a method of J .A. Nitsche, in Computational Mechanics: New Trends and Applications, S. Idelsohn, E. Onate and E. Dvorkin Eds., CIMNE, Barcelona ( 1998 ). MR 1839048
[20] V. Thomée , Galerkin Finite Element Methods for Parabolic Problems . Springer ( 1997 ). MR 1479170 | Zbl 0884.65097 · Zbl 0884.65097
[21] B.I. Wohlmuth , A residual based error estimator for mortar finite element discretizations . Numer. Math. 84 ( 1999 ) 143 - 171 . Zbl 0962.65090 · Zbl 0962.65090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.