zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical methods for the solution of partial differential equations of fractional order. (English) Zbl 1047.76075
Summary: Anomalous diffusion is a possible mechanism underlying plasma transport in magnetically confined plasmas. To model this transport mechanism, fractional order space derivative operators can be used. Here, the numerical properties of partial differential equations of fractional order $\alpha$, $1 \leqslant \alpha \leqslant 2$, are studied. Two numerical schemes, an explicit and a semi-implicit one, are used in solving these equations. Two different discretization methods of the fractional derivative operator have also been used. The accuracy and stability of these methods are investigated for several standard types of problems involving partial differential equations of fractional order.

76M20Finite difference methods (fluid mechanics)
76X05Ionized gas flow in electromagnetic fields; plasmic flow
65R20Integral equations (numerical methods)
Full Text: DOI
[1] Shlesinger, M. F.; Zaslavsky, G. M.; Klafter, J.: Nature. 363, 31 (1993)
[2] Del-Castillo-Negrete, D.: Phys. fluids. 10, 576 (1998)
[3] Montroll, E. W.; Shlesinger, M. F.: J.lebowitze.montroll studies in statistical mechanics. Studies in statistical mechanics, 1 (1984)
[4] Carreras, B. A.: IEEE trans. Plasma sci.. 25, 1281 (1997)
[5] Carreras, B. A.; Lynch, V. E.; Zaslavsky, G. M.: Phys. plasmas. 8, 5096 (2001)
[6] B.A. Carreras, V.E. Lynch, L. Garcia, M. Edelman, G.M. Zaslavsky, Chaos 14 (2003), to be published
[7] Cardozo, N. J. L.: Plasma phys. Contr. fusion. 37, 799 (1995)
[8] Gentle, K.; Bravenec, R. V.; Cima, G.; Gasquet, H.; Hallock, G. A.; Phillips, P. E.; Ross, D. W.; Rowan, W. L.; Wootton, A. J.; Crowley, T. P.; Heard, J.; Ourona, A.; Schoch, P. M.; Watts, C.: Phys. plasmas. 2, 2292 (1995)
[9] Samorodnitsky, G.; Taqqu, M. S.: Stable non-Gaussian random processes. (1994) · Zbl 0925.60027
[10] Zaslavsky, G. M.: Chaos. 4, 25 (1994) · Zbl 1194.37163
[11] Metzler, R.; Klafter, J.: Phys. rep.. 339, 1-77 (2000)
[12] Oldham, K. B.; Spanier, J.: The fractional calculus. (1974) · Zbl 0292.26011
[13] Blank, Luise: Nonlinear world. 4, 473-490 (1997)
[14] Carpinteri, Alberto; Mainardi, Francesco: Fractals and fractional calculus in continuum mechanics. (1997) · Zbl 0917.73004
[15] Diethelm, Kai: Elec. trans. Numer. anal.. 5, 1 (1997)
[16] Pozrikidis, C.: Numerical computation in science and engineering. (1998) · Zbl 0971.65001
[17] Del-Castillo-Negrete, D.; Carreras, B. A.; Lynch, V. E.: Phys. rev. Lett.. 91, 18302 (2003)
[18] Murray, J. D.: Mathematical biology. (1989) · Zbl 0682.92001