×

zbMATH — the first resource for mathematics

Adaptive nonlinear tracking with complete compensation of unknown disturbances. (English) Zbl 1047.93550

MSC:
93D21 Adaptive or robust stabilization
93C40 Adaptive control/observation systems
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bonilla, M.A.; Cheang, J.A.; Lozano, R., On the use of adaptive precompensators for rejecting output disturbances in non minimum phase SISO systems, (), 1183-1184
[2] Buchner, H.J.; Hemami, H., Servocompensation of disturbance in robotic systems, Int J control, 48, 273-288, (1988) · Zbl 0652.93041
[3] Davison, E.J., The robust control of a servomechanism problem for linear time-invariant multivariable systems, IEEE trans autom control, 21, 1, 25-34, (1976) · Zbl 0326.93007
[4] Desoer, C.A.; Lin, C.-A., Tracking and disturbance rejection of MIMO non-linear systems with PI controller, IEEE trans autom control, 30, 9, 861-867, (1985) · Zbl 0573.93027
[5] Di Benedetto, M.D., Synthesis of an internal model for nonlinear output regulation, Int J control, 45, 1023-1034, (1987) · Zbl 0651.93031
[6] Elliot, H.; Goodwin, G.C., Adaptive implementation of the internal model principle, Proceedings of the 23rd IEEE conference on decision and control, USA, 1292-1297, (1984)
[7] Francis, B.A.; Wonham, W.M., The internal model principle for linear multivariable regulators, Appl math opt, 2, 170-194, (1975) · Zbl 0351.93015
[8] Gang Feg; Palaniswami, M., Unified treatment of internal model principle based adaptive control algorithms, Int J contr, 54, 4, 883-901, (1991) · Zbl 0752.93039
[9] Grigoriev, V.; Drozdov, V.; Lavrentyev, V.; Ushakov, A., Computer-aided design of discrete controllers, (1983), Mashinostroenie Leningrad, (in Russian)
[10] Huang, J.; Rugh, W.J., Stabilization on zero-error manifolds and the nonlinear servomechanism problem, IEEE trans autom. control, 37, 7, 1009-1013, (1992) · Zbl 0767.93042
[11] Isidori, A.; Byrnes, C.I., Output regulation of nonlinear systems, IEEE trans autom control, 35, 2, 131-140, (1990) · Zbl 0704.93034
[12] Johnson, C.D., Accommodation of external disturbances in linear regulator and servomechanism problems, IEEE trans autom control, 16, 6, 635-644, (1971)
[13] Khalil, H.K., Robust servomechanism output feedback controller for feedback linearizable systems, Automatica, 30, 10, 1587-1599, (1994) · Zbl 0816.93032
[14] Krstić, M.; Kanellakopoulos, I.; Kokotović, P.V., Nonlinear and adaptive control design, (1995), Wiley New York · Zbl 0763.93043
[15] Nikiforov, V.O., Adaptive servocompensation of input disturbances, (), 175-180, vol K
[16] Nikiforov, V.O., Adaptive controller rejecting uncertain deterministic disturbances in SISO systems, ()
[17] Tseng, H.C., Error-feedback servomechanisms in nonlinear systems, Int J control, 55, 1093-1114, (1992) · Zbl 0757.93031
[18] Tsypkin, Ya.Z.; Nadezhdin, P.V., Robust nominal continuous- time system design with internal models, (), 23-26
[19] Wonham, W.M., Linear multivariable control: a geometric approach, (1979), Springer Berlin · Zbl 0393.93024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.