×

Group schemes and local densities. (English) Zbl 1048.11028

Let \(L\) be a lattice over \(\mathbb{Z}\) equipped with an integral quadratic form \(Q\). The celebrated Smith-Minkowski-Siegel mass formula expresses the total mass of \((L,Q)\), which is a weighted class number of the genus of \((L,Q)\), as a product of local factors. These local factors are known as the local densities of \((L,Q)\). Subsequent work of Kneser, Tamagawa and Weil resulted in an elegant formulation of the subject in terms of Tamagawa measures. In particular, the local density at a non-Archimedean place \(p\) can be expressed as the integral of a certain volume form \(w^{\text{Id}}\) over \(\operatorname{Aut}_{\mathbb{Z}_p}(L,Q)\), which is an open compact subgroup of \(\operatorname{Aut}_{\mathbb{Q}_p} (L,Q)\).
An explicit formula for the local density for an arbitrary lattice over \(\mathbb{Z}_p\) is known through the work of Pall (for \(p\neq 2)\) and Watson (for \(p=2)\). Unfortunately, the known proof involves complicated recursions. On the other hand, Conway and Sloane have given a heuristic explanation of the formula.
In this paper, a simple and conceptual proof of the local density fomula for \(p\neq 2\) is given. The proof is based on the observation that there exists a smooth affine group scheme \({\mathcal G}\) over \(\mathbb{Z}_p\) with generic fibre \(\operatorname{Aut}_{\mathbb{Q}_p} (L,Q)\) which satisfies \({\mathcal G}(\mathbb{Z}_p)= \operatorname{Aut}_{\mathbb{Z}_p}(L,Q)\). The main contribution of this paper is to give an explicit construction of \({\mathcal G}\) and to determine its special fibre. Finally, by comparing \(w^{\text{Id}}\) and the canonical volume form \(w^{\text{can}}\) of \({\mathcal G}\), the explicit formula for local density is obtained. As a consequence of the mass formula and the result on local densities, an explicit formula for the mass of an arbitrary lattice in a quaternionic Hermitian space is obtained which extends the result of Shimura for the mass of maximal lattice.

MSC:

11E08 Quadratic forms over local rings and fields
14L15 Group schemes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Artin, A. Grothendieck, and J. L. Verdier, eds., Théorie des topos et cohomologie étale des schémas, 2, Séminaire de Géométrie Algébrique du Bois-Marie 1963/64 (SGA 4), Lecture Notes in Math. 270 , Springer, Berlin, 1972. · Zbl 0234.00007
[2] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron Models, Ergeb. Math. Grenzgeb. (3) 21 , Springer, Berlin, 1990. · Zbl 0705.14001
[3] N. Bourbaki, Éléments de mathématique, fasc. 38: Groupes et algèbres de Lie, chapitres 7–8, Actualités Sci. Indust. 1364 , Hermann, Paris, 1975.
[4] F. Bruhat and J. Tits, Groupes réductifs sur un corps local, II, Publ. Math. IHES 53 (1984), 197–376.
[5] –. –. –. –., Schémas en groupes et immeubles des groupes classiques sur un corps local, II: Groupes unitaires , Bull. Soc. Math. France 115 (1987), 141–195. · Zbl 0636.20027
[6] J. H. Conway and N. J. A. Sloane, Low-dimensional lattices, IV: The mass formula , Proc. Roy. Soc. London Ser. A 419 (1988), 259–286. · Zbl 0655.10023 · doi:10.1098/rspa.1988.0107
[7] M. Demazure and A. Grothendieck, eds., Schémas en groupes, I, II, III , Séminaire de Géométrie Algébrique du Bois-Marie 1962/64 (SGA 3), Lecture Notes in Math. 151 , 152 , 153 , Springer, Berlin, 1970.
[8] W. T. Gan, J. P. Hanke, and J.-K. Yu, On an exact mass formula of Shimura, preprint, 1999. · Zbl 1023.11019 · doi:10.1215/S0012-7094-01-10716-3
[9] B. H. Gross, On the motive of a reductive group, Invent. Math. 130 (1997), 287–313. · Zbl 0904.11014 · doi:10.1007/s002220050186
[10] B. H. Gross and W.T. Gan, Haar measure and the Artin conductor , Trans. Amer. Math. Soc. 351 (1999), 1691–1704. JSTOR: · Zbl 0991.20033 · doi:10.1090/S0002-9947-99-02095-4
[11] J. P. Hanke, An exact mass formula for orthogonal groups over number fields , Ph.D. dissertation, Princeton Univ., Princeton, 1999.
[12] R. Hartshorne, Algebraic Geometry , Grad. Texts in Math. 52 , Springer, New York, 1977. · Zbl 0367.14001
[13] Y. Hironaka, Local zeta functions on Hermitian forms and its applications to local densities , J. Number Theory 71 (1998), 40–64. · Zbl 0932.11072 · doi:10.1006/jnth.1998.2237
[14] Y. Hironaka and F. Sato, Spherical functions and local densities of alternating forms , Amer. J. Math. 110 (1988), 473–512. JSTOR: · Zbl 0662.22013 · doi:10.2307/2374620
[15] –. –. –. –., Local densities of alternating forms, J. Number Theory 33 (1989), 32–52. · Zbl 0682.10017 · doi:10.1016/0022-314X(89)90058-9
[16] N. Jacobson, Basic Algebra, II, W. H. Freeman, San Francisco, 1980.
[17] Y. Kitaoka, Arithmetic of Quadratic Forms, Cambridge Tracts in Math. 106 , Cambridge Univ. Press, Cambridge, 1993. · Zbl 0785.11021
[18] G. Pall, The Weight of a Genus of Positive \(n\)-ary Quadratic Forms, Proc. Sympos. Pure Math. 8 , Amer. Math. Soc., Providence, 1965, 95–105. · Zbl 0136.03101
[19] J.-P. Serre, Harvard lecture notes, 1984.
[20] G. Shimura, Some exact formulas for quaternion unitary groups, J. Reine Angew. Math. 509 (1999), 67–102. · Zbl 0918.11027 · doi:10.1515/crll.1999.509.67
[21] C. L. Siegel, Gesammelte Abhandlungen, I, II, III, Springer, Berlin, 1966.
[22] T. A. Springer, Linear Algebraic Groups, 2d ed., Progr. Math. 9 , Birkäuser, Boston, 1998. · Zbl 0927.20024
[23] J. Tits, “Reductive groups over local fields” in Automorphic Forms, Representations, and \(L\)-functions (Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math. 33 , Amer. Math. Soc., Providence, 1979, 29–69. · Zbl 0415.20035
[24] W. C. Waterhouse, Introduction to Affine Group Schemes, Grad Texts in Math. 66 , Springer, New York, 1979. · Zbl 0442.14017
[25] G. L. Watson, The \(2\)-adic density of a quadratic form , Mathematika 23 (1976), 94–106. · Zbl 0326.10022 · doi:10.1112/S0025579300006197
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.