Fisher, Benji; Friedberg, Solomon Sums of twisted GL(2) \(L\)-functions over function fields. (English) Zbl 1048.11039 Duke Math. J. 117, No. 3, 543-570 (2003). This paper concerns a weighted sum of twisted \(L\)-functions, \[ \sum_D L(s, \pi \otimes \chi_D) a_0(s, \pi, D) \eta(D) | D| ^{-w}. \] Here \(\pi\) (respectively, \(\eta\)) is a cuspidal automorphic representation of \(\text{GL}_2(\mathbb{A}_K)\) (respectively, \(\text{GL}_1(\mathbb{A}_K)\)) and \(\chi_D\) are quadratic characters. The field \(K\) is a function field of a smooth projective curve \(C\) over a finite field of odd characteristic. The sum runs over a certain set of effective divisors of \(C\). The weight functions \(a_0(s, \pi, D)\) have been defined by D. Bump, S. Friedberg and J. Hoffstein [Sums of twisted GL(3) automorphic \(L\)-functions, in Contributions to automorphic forms, geometry and arithmetic, Johns Hopkins Univ. Press, Baltimore, MD, 131–162 (2004)], who proved the uniqueness. That is, there is a unique family of weight functions such that the sum satisfies a certain nonabelian group of functional equations.This paper presents a different approach. The authors rewrite the sum as a multiple Dirichlet series and give a new description of the weight functions. They prove the sum has a finite, nonabelian group of functional equations. They also establish a similar result in the noncuspidal case, where the natural object is a sum in three complex variables.The main result is the proof that the sums are rational functions. The authors specify the possible denominators and the degrees of the numerators of these rational functions. Reviewer: Dubravka Ban (Münster) Cited in 6 Documents MSC: 11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations 11F70 Representation-theoretic methods; automorphic representations over local and global fields 11G20 Curves over finite and local fields 11M38 Zeta and \(L\)-functions in characteristic \(p\) Keywords:twisted \(L\)-function; double Dirichlet series; automorphic forms × Cite Format Result Cite Review PDF Full Text: DOI References: [1] D. Bump, S. Friedberg, and J. Hoffstein, Eisenstein series on the metaplectic group and nonvanishing theorems for automorphic \(L\)-functions and their derivatives , Ann. of Math. (2) 131 (1990), 53–127. JSTOR: · Zbl 0699.10039 · doi:10.2307/1971508 [2] –. –. –. –., Nonvanishing theorems for \(L\)-functions of modular forms and their derivatives , Invent. Math. 102 (1990), 543–618. · Zbl 0721.11023 · doi:10.1007/BF01233440 [3] –. –. –. –., On some applications of automorphic forms to number theory , Bull. Amer. Math. Soc. (N.S.) 33 (1996), 157–175. · Zbl 0865.11043 · doi:10.1090/S0273-0979-96-00654-4 [4] ——–, “Sums of twisted \(\GL(3)\) automorphic \(L\)-functions” to appear in Contributions to Automorphic Forms, Geometry and Arithmetic , ed. H. Hida, D. Ramakrishnan, and F. Shahidi, Johns Hopkins Univ. Press., Baltimore, 2003. [5] C. J. Bushnell, G. M. Henniart, and P. C. Kutzko, Local Rankin-Selberg convolutions for \({\GL}_ n\): Explicit conductor formula , J. Amer. Math. Soc. 11 (1998), 703–730. JSTOR: · Zbl 0899.22017 · doi:10.1090/S0894-0347-98-00270-7 [6] J. W. S. Cassels and A. Fröhlich, eds., Algebraic Number Theory , Academic Press, London, 1967. · Zbl 0153.07403 [7] A. Diaconu, D. Goldfeld, and J. Hoffstein, Multiple Dirichlet series and moments of zeta and \(L\)-functions , · Zbl 1053.11071 · doi:10.1023/B:COMP.0000018137.38458.68 [8] V. G. Drinfel’d, Proof of the Petersson conjecture for \(\GL(2)\) over a global field of characteristic \(p\) , Funktsional. Anal. i Prilozhen. 22 , no. 1 (1988), 34–54.; English translation in Funct. Anal. Appl. 22 (1988), 28–43. [9] S. Dutta Gupta, Mean values of \(L\)-functions over function fields , J. Number Theory 63 (1997), 101–131. · Zbl 0872.11038 · doi:10.1006/jnth.1997.2075 [10] B. Fisher and S. Friedberg, Double Dirichlet series over function fields , to appear in Compositio Math. · Zbl 1082.11053 · doi:10.1112/S0010437X03000848 [11] S. Friedberg and J. Hoffstein, Nonvanishing theorems for automorphic \(L\)-functions on \(\GL(2)\) , Ann. of Math. (2) 142 (1995), 385–423. JSTOR: · Zbl 0847.11026 · doi:10.2307/2118638 [12] J. Hoffstein and M. Rosen, Average values of L-series in function fields , J. Reine Angew. Math. 426 (1992), 117–150. · Zbl 0754.11036 · doi:10.1515/crll.1992.426.117 [13] L. Hörmander, An Introduction to Complex Analysis in Several Variables , 3d ed., North-Holland Math. Library 7 , North-Holland, Amsterdam, 1990. · Zbl 0685.32001 [14] J. Humphreys, Introduction to Lie Algebras and Representation Theory , Grad. Texts in Math. 9 , Springer, New York, 1972. · Zbl 0254.17004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.