×

zbMATH — the first resource for mathematics

Viro method for the construction of real complete intersections. (English) Zbl 1048.14035
Summary: The Viro method is a powerful construction method of real nonsingular algebraic hypersurfaces with prescribed topology [O. Viro, in: Topology conference, Proc., Collect. Rep., Leningrad 1982, 149–197 (1983; Zbl 0605.14021)]. It is based on polyhedral subdivisions of Newton polytopes. A combinatorial version of the Viro method is called combinatorial patchworking and arises when the considered subdivisions are triangulations. B. Sturmfels [Ann. Sc. Norm. Super. Pisa (4) 21, 377–386 (1994; Zbl 0826.14032)] generalized the combinatorial patchworking to the case of real complete intersections. The author extends this result by generalizing the Viro method to the case of real complete intersections.

MSC:
14P25 Topology of real algebraic varieties
14M10 Complete intersections
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bihan, F., Betti numbers of real numerical quintic surfaces, (), 31-38 · Zbl 0988.14026
[2] Bihan, F., Une sextique de l’espace projectif réel avec un grand nombre d’anses, Rev. math. helv., 14, 439-461, (2001) · Zbl 1073.14558
[3] F. Bihan, Asymptotics of Betti numbers of real algebraic surfaces, Comment. Math. Helv, to appear. · Zbl 1022.14018
[4] F. Bihan, Doubles hypersurfaces réelles et asymptotiques de nombres de Betti, submitted for publication, 2001.
[5] Chevallier, B., Secteurs et déformations locales des courbes réelles, Math. ann., 307, 1-28, (1997) · Zbl 0947.14003
[6] Gelfand, I.; Kapranov, M.; Zelevinsky, A., Discriminants, resultants and multidimensional determinants, (1994), Birkhauser Boston · Zbl 0827.14036
[7] Huber, B.; Rambau, J.; Santos, F., The Cayley trick, lifting subdivisions and the bohne-dress theorem on zonotopal tilings, J. eur. math. soc., 2, 179-198, (2000) · Zbl 0988.52017
[8] Itenberg, I., Counter-examples to ragsdale conjecture and T-curves, Cont. math., 182, 55-72, (1995) · Zbl 0843.14023
[9] Itenberg, I., Topology of real algebraic T-surfaces, Rev. mat. no. suppl., 10, 131-152, (1997) · Zbl 0904.14033
[10] Itenberg, I.; Kharlamov, V.M., Towards the maximal number of components of a non-singular surface of degree 5 in \(R\)P3, Amer. math. soc., 173, 111-118, (1996) · Zbl 0858.14030
[11] Itenberg, I.; Shustin, E., Singular points and limit cycles of planar polynomial vector fields, Duke math. J., 102, 1-37, (2000) · Zbl 0953.34021
[12] I. Itenberg, and, O. Viro, Maximal real algebraic hypersurfaces of projective space, in preparation. · Zbl 1180.14055
[13] Risler, J.-J., Construction d’hypersurfaces réelles [d’après viro], Séminaire bourbaki, 1992/93, (1993), p. 69-86 · Zbl 0824.14045
[14] Schwartz, M.-H., Champs radiaux sur une stratification analytique, Travaux en cours, 39, (1991), Hermann Paris · Zbl 0727.57026
[15] Shustin, E., Real plane algebraic curves with prescribed singularities, Topology, 32, 845-856, (1993) · Zbl 0845.14017
[16] Shustin, E., Critical points of real polynomials, subdivisions of Newton polyhedra and topology of real algebraic hypersurfaces, Amer. math. soc., 173, 203-223, (1996) · Zbl 0883.14032
[17] Sturmfels, B., Viro’s theorem for complete intersections, Ann. scuola norm. sup. Pisa (4), 21, 377-386, (1994) · Zbl 0826.14032
[18] Sturmfels, B., On the Newton polytope of the resultant, J. algebraic combin., 3, 207-236, (1994) · Zbl 0798.05074
[19] O. Viro, Gluing of algebraic hypersurfaces, smoothing of singularities and construction of curves, inProceedings of the Leningrad International Topological Conference Leningrad, August 1983, pp. 149-197, Nauka, Leningrad, 1983 (in Russian).
[20] O. Viro, Gluing of Plane Algebraic Curves and Construction of Curves of Degree 6 and 7, Lecture Notes in Mathematics, Vol. 1060, pp. 187-200, Springer-Verlag, Berlin, Heidelberg, 1984. · Zbl 0576.14031
[21] Viro, O., Real algebraic plane curves: constructions with controlled topology, Leningrad math. J., 1, 1059-1134, (1990) · Zbl 0732.14026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.