×

Tensor product varieties and crystals: The \(ADE\) case. (English) Zbl 1048.20029

Let \(L\) be a simple simply laced Lie algebra. The author describes tensor product and multiplicity varieties, associated to the Dynkin graph of \(L\), that are closely related to Nakajima’s quiver varieties. In particular, the author shows that the set of irreducible components of a tensor product variety can be equipped with the structure of an \(L\)-crystal isomorphic to the crystal of the canonical basis of the tensor product of several simple finite-dimensional representations of \(L\), and that the number of irreducible components of a multiplicity variety is equal to the multiplicity of a certain representation in the tensor product of several others. The decomposition of a tensor product into a direct sum is also described geometrically.

MSC:

20G05 Representation theory for linear algebraic groups
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
14M15 Grassmannians, Schubert varieties, flag manifolds
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld, and Yu. I. Manin, Construction of instantons , Phys. Lett. A 65 (1978), 185–187. · Zbl 0424.14004
[2] W. Borho and R. MacPherson, “Partial resolutions of nilpotent varieties” in Analysis and Topology on Singular Spaces (Luminy, France, 1981), II, III , Astérisque 101 / 102 , Soc. Math. France, Montrouge, 1983, 23–74. · Zbl 0576.14046
[3] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmannian , Duke Math. J. 107 (2001), 561–575. · Zbl 1015.20030
[4] W. Crawley-Boevey, Geometry of the moment map for representations of quivers , Compositio Math. 126 (2001), 257–293. · Zbl 1037.16007
[5] V. Ginzburg, Lagrangian construction of the enveloping algebra \(U(\mathrm sl_n)\) , C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), 907–912. · Zbl 0749.17009
[6] I. Grojnowski and G. Lusztig, “On bases of irreducible representations of quantum \(\mathrm GL_n\)” in Kazhdan-Lusztig Theory and Related Topics (Chicago, Ill., 1989) , Contemp. Math. 139 , Amer. Math. Soc., Providence, 1992, 167–174. · Zbl 0815.20029
[7] P. Hall, “The algebra of partitions” in Proceedings of the Fourth Canadian Mathematical Congress (Banff, 1957) , Univ. of Toronto Press, Toronto, 1959, 147–159. · Zbl 0122.03403
[8] A. Joseph, Quantum Groups and Their Primitive Ideals , Ergeb. Math. Grenzgeb. (3) 29 , Springer, Berlin, 1995. · Zbl 0808.17004
[9] M. Kashiwara, Crystalizing the \(q\)-analogue of universal enveloping algebras , Comm. Math. Phys. 133 (1990), 249–260. · Zbl 0724.17009
[10] –. –. –. –., On crystal bases of the \(Q\)-analogue of universal enveloping algebras , Duke Math. J. 63 (1991), 465–516. · Zbl 0739.17005
[11] –. –. –. –., Crystal bases of modified quantized enveloping algebra , Duke Math. J. 73 (1994), 383–413. · Zbl 0794.17009
[12] M. Kashiwara and Y. Saito, Geometric construction of crystal bases , Duke Math. J. 89 (1997), 9–36. · Zbl 0901.17006
[13] D. Kazhdan and G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras , Invent. Math. 87 (1987), 153–215. · Zbl 0613.22004
[14] H. Kraft and C. Procesi, Closures of conjugacy classes of matrices are normal , Invent. Math. 53 (1979), 227–247. · Zbl 0434.14026
[15] P. B. Kronheimer and H. Nakajima, Yang-Mills instantons on ALE gravitational instantons , Math. Ann. 288 (1990), 263–307. · Zbl 0694.53025
[16] G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras , J. Amer. Math. Soc. 4 (1991), 365–421. JSTOR: · Zbl 0738.17011
[17] ——–, Introduction to Quantum Groups , Progr. Math. 110 , Birkhäuser, Boston, 1993. · Zbl 0788.17010
[18] –. –. –. –., On quiver varieties , Adv. Math. 136 (1998), 141–182. · Zbl 0915.17008
[19] –. –. –. –., Quiver varieties and Weyl group actions , Ann. Inst. Fourier (Grenoble) 50 (2000), 461–489. · Zbl 0958.20036
[20] –. –. –. –., Semicanonical bases arising from enveloping algebras , Adv. Math. 151 (2000), 129–139. · Zbl 0983.17009
[21] ——–, “Constructible functions on varieties attached to quivers” in Studies in Memory of Issai Schur , Progr. Math. 210 , Birkhäuser, Boston, 2002.
[22] I. G. Macdonald, Symmetric Functions and Hall Polynomials , 2d ed., Oxford Math. Monogr., Oxford Univ. Press, New York, 1995. · Zbl 0824.05059
[23] A. Malkin, A generalization of Hall polynomials to ADE case, Internat. Math. Res. Notices 2001 , 1195–1202. · Zbl 1026.17008
[24] –. –. –. –., Tensor product varieties and crystals: \(GL(N)\) case , Trans. Amer. Math. Soc. 354 (2002), 675–704. JSTOR: · Zbl 0990.20030
[25] I. Mirković and K. Vilonen, Perverse sheaves on affine Grassmannians and Langlands duality , Math. Res. Lett. 7 (2000), 13–24. · Zbl 0987.14015
[26] H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras , Duke Math. J. 76 (1994), 365–416. · Zbl 0826.17026
[27] –. –. –. –., Quiver varieties and Kac-Moody algebras , Duke Math. J. 91 (1998), 515–560. · Zbl 0970.17017
[28] –. –. –. –., Quiver varieties and finite-dimensional representations of quantum affine algebras , J. Amer. Math. Soc. 14 (2001), 145–238. JSTOR: · Zbl 0981.17016
[29] –. –. –. –., Quiver varieties and tensor products , Invent. Math. 146 (2001), 399–449. \CMP1 865 400 · Zbl 1023.17008
[30] C. M. Ringel, “Hall algebras” in Topics in Algebra (Warsaw, 1988), Part 1 , Banach Center Publ. 26 , Part 1, PWN, Warsaw, 1990, 433–447.
[31] A. Schofield, Notes on constructing Lie algebras from finite-dimensional algebras , preprint, 1991. · Zbl 0790.16013
[32] M. Varagnolo and E. Vasserot, Perverse sheaves and quantum Grothendieck rings , · Zbl 1162.17307
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.