Vrábel’, Róbert Quasilinear and quadratic singularly perturbed periodic boundary value problem. (English) Zbl 1048.34094 Arch. Math., Brno 36, No. 1, 1-7 (2000). The author deals with existence and asymptotic behaviour of solutions of the periodic boundary value problem with a small parameter \[ \varepsilon y''=F(t,y,y'), \quad y(a)=y(b),\;y'(a)=y'(b), \tag{*} \] in the particular cases when \(F(t,y,y')=f(t,y)y'+g(t,y)\) or \(F(t,y,y')\!=\!f(t,y)y'{}^2+g(t,y)\). Using the method of upper and lower solutions, solutions of (*) are compared with solutions of the equation \(F(t,u,u')=0\) (which corresponds to the case \(\varepsilon =0\) in (*)). Reviewer: Ondřej Došlý (Brno) MSC: 34E15 Singular perturbations for ordinary differential equations 34B15 Nonlinear boundary value problems for ordinary differential equations Keywords:singularly perturbed periodic boundary value problem PDFBibTeX XMLCite \textit{R. Vrábel'}, Arch. Math. (Brno) 36, No. 1, 1--7 (2000; Zbl 1048.34094) Full Text: EuDML