Dávila, Juan Global regularity for a singular equation and local \(H^ 1\) minimizers of a nondifferentiable functional. (English) Zbl 1048.35022 Commun. Contemp. Math. 6, No. 1, 165-193 (2004). Let \(\Omega\) be a bounded domain in \(\mathbb{R}^d\). The author is mainly interested in nonnegative solutions to the equation \[ \begin{cases} -\Delta u+ u^{-\beta}=\lambda f(x,u)&\text{in }\Omega,\\ u= 0 &\text{on }\partial\Omega,\end{cases}\tag{1} \] where \(0<\beta< 1\), \(\lambda> 0\) and \(f: \Omega\times \mathbb{R}^+\to \mathbb{R}^+\) is a nonnegative function. Under some suitable assumptions on \(f\), the author proves optimal Hölder estimates up to the boundary for the maximal solution of (1). Reviewer: Messoud A. Efendiev (Berlin) Cited in 7 Documents MSC: 35J60 Nonlinear elliptic equations 35B65 Smoothness and regularity of solutions to PDEs 35J25 Boundary value problems for second-order elliptic equations Keywords:singular elliptic equation; gradient estimates; maximal solution PDF BibTeX XML Cite \textit{J. Dávila}, Commun. Contemp. Math. 6, No. 1, 165--193 (2004; Zbl 1048.35022) Full Text: DOI References: [1] Brezis H., C. R. Acad. Sci. Paris, Série I 317 pp 465– [2] Dávila J., J. Anal. Math. [3] M. Giaquinta, Annals of Math. Stud., Multiple integrals in the calculus of variations and nonlinear elliptic systems (Princeton University Press, 1983) p. 105. [4] DOI: 10.1007/BF01389324 · Zbl 0513.49003 · doi:10.1007/BF01389324 [5] Giaquinta M., Boll. Un. Mat. Ital. A (6) 3 pp 239– [6] DOI: 10.1017/S030821050002970X · Zbl 0805.35032 · doi:10.1017/S030821050002970X [7] DOI: 10.1512/iumj.1983.32.32001 · Zbl 0545.35013 · doi:10.1512/iumj.1983.32.32001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.