zbMATH — the first resource for mathematics

Precise regularity results for the Euler equations. (English) Zbl 1048.35079
Using the methods of paradifferential calculus and regularity estimates in Besov (or Triebel-Lizorkin) spaces, the author proves the following condition for blow-up: if the maximal time \(T\) of existence of solution in smooth bounded domains is finite, then the \(L_\infty\) norm of velocity curl necessarily blows up on the time interval \([0;T]\).

35Q35 PDEs in connection with fluid mechanics
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI
[1] Beale, J.T.; Kato, T.; Majda, A., Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. math. phys., 94, 61-66, (1984) · Zbl 0573.76029
[2] Ferrari, A.B., On the blow-up of solutions of the 3-D Euler equations in a bounded domain, Comm. math. phys., 155, 277-294, (1993) · Zbl 0787.35071
[3] Shirota, T.; Yanagisawa, T., A continuation principle for the 3-D Euler equations for incompressible fluids in a bounded domain, Proc. Japan acad. ser. A, 69, 77-82, (1993) · Zbl 0790.35086
[4] Bahouri, H.; Dehman, B., Remarques sur l’apparition de singularités dans LES écoulements eulériens incompressibles à donnée initiale höldérienne, J. math. pures appl., 73, 335-346, (1994) · Zbl 0833.76011
[5] Visik, M., Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. sci. école norm. sup., 32, 769-812, (1999) · Zbl 0938.35128
[6] Visik, M., Hydrodynamics in Besov spaces, Arch. rational mech. anal., 145, 197-214, (1998) · Zbl 0926.35123
[7] Chae, D.H., On the well-posedness of the Euler equations in the triebel – lizorkin spaces, Comm. pure appl. math., LV, 654-678, (2002) · Zbl 1025.35016
[8] K. Kikuchi, The existence and uniqueness of non stationary ideal incompressible flow in exterior domains in \(R\^{}\{3\}\), J. Math. Soc. Japan 38 · Zbl 0641.35009
[9] Saint Raymond, X., Remarks on axisymmetric solutions of the incompressible Euler system, Comm. partial differential equations, 19, 321-334, (1994) · Zbl 0795.35063
[10] Dutrifoy, A., Existence globale en temps de solutions hélicoïdales des équations d’Euler, C. R. acad. sci. Paris Sér. I math., 329, 653-656, (1999) · Zbl 0948.76009
[11] Chemin, J.-Y., Perfect incompressible fluids, Oxford lecture series in mathematics and its applications, 14, (1998), Oxford Univ. Press
[12] Triebel, H., Theory of functions spaces, Monographs in mathematics, 78, (1983), Birkhäuser
[13] Grisvard, P., Elliptic problems in nonsmooth domains, Monographs and studies in mathematics, 24, (1985), Pitman · Zbl 0695.35060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.