×

A generalized multi-component Glachette-Johnson (GJ) hierarchy and its integrable coupling system. (English) Zbl 1048.37063

Summary: A new loop algebra \(\widetilde G_M\) is constructed, whose commutation operation defined by us is as simple and straightforward as that in the loop algebra \(A_1\). It follows that a general scheme for generating multi-component integrable hierarchies is proposed. As an illustrative example, a new isospectral problem is established by taking advantage of \(\widetilde G_M\). A type of multi-component Glachette–Johnson (GJ) hierarchy is obtained. Furthermore, by constructing an expanding loop algebra \(\widetilde F_M\) of the loop algebra \(\widetilde G_M\), a kind of integrable coupling of the above GJ hierarchy is worked out.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
17B80 Applications of Lie algebras and superalgebras to integrable systems
37K30 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with infinite-dimensional Lie algebras and other algebraic structures
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Tu, G., J. Math. Phys., 30, 2, 330 (1989)
[3] Li, Y., Soliton and integrable system (1999), Shanghai Scientific and Technological Education Publishing House
[4] Wadati, M.; Konno, K.; Ichikawa, Y. H., J. Phys. Soc. Jpn., 47, 1698 (1979)
[5] Shimizu, T.; Wadati, M., Progr. Theor. Phys., 63, 808 (1980)
[6] Wadati, M., J. Phys. Soc. Jpn., 34, 1289 (1973)
[7] Wadati, M.; Sanuki, H.; Konno, K., J. Phys. Soc. Jpn., 53, 417 (1975)
[8] Wadati, M.; Toda, M., J. Phys. Soc. Jpn., 32, 1403 (1972)
[9] Wadati, M.; Konno, K.; Ichikawa, Y. H., J. Phys. Soc. Jpn., 46, 1965 (1979)
[10] Wadati, M., J. Phys. Soc. Jpn., 32, 1681 (1972)
[11] Hirota, R., J. Phys. Soc. Jpn., 35, 286 (1973)
[12] Ma, W., Chin. Ann. Math. A, 12, 1, 115 (1992)
[13] Hu, X., J. Phys. A: Math. Gen., 27, 2497 (1994)
[14] Hu, X., J. Phys. A: Math. Gen., 30, 619 (1997)
[15] Fan, E., Physica A, 301, 105 (2002)
[16] Fan, E., J. Math. Phys., 41, 11, 7769 (2000)
[17] Guo, F., Acta Math. Sini., 40, 6, 801 (1997)
[18] Guo, F., Acta Math. Appl. Sini., 23, 2, 181 (2000)
[19] Guo, F., J. Sys. Sci. Math. Sci., 22, 1, 36 (2002)
[21] Guo, F.; Zhang, Y., A unified expressing model of the AKNS hierarchy and KN hierarchy, as well as its integrable coupling system, Chaos, Solitons & Fractals, 19, 5, 1207 (2004) · Zbl 1057.37059
[22] Tsuchida, T.; Wadati, M., J. Phys. Soc. Jpn., 68, 2241 (1999)
[23] Tsuchida, T.; Wadati, M., Phys. Lett. A, 257, 53 (1999)
[24] Ma, W.; Zhou, R., Chin. Ann. Math. B, 23, 3, 373 (2002)
[26] Guo, F.; Zhang, Y., Acta Phys. Sini., 51, 5, 951 (2002)
[27] Zhang, Y.; Zhang, H., J. Math. Phys., 43, 1, 466 (2002)
[28] Zhang, Y., Phys. Lett. A, 299, 543 (2002)
[29] Zhang, Y.; Zhang, H., J. Math. Resear. Exposi., 22, 2, 289 (2002)
[30] Zhang, Y.; Yan, Q., Ann. Diff. Eqs., 18, 4, 431 (2002)
[31] Zhang, Y.; Yan, Q., Chaos, Solitons & Fractals, 16, 263 (2003)
[32] Fussteiner, B., Coupling of completely integrable systems: the perturbation bundle, (Clarkson, P. A., Applications of analytic and geometric methods to nonlinear differential equations (1993), Kluwer: Kluwer Dordrecht), 125 · Zbl 0786.35123
[33] Ma, W.; Fuchssteiner, B., Chaos, Solitons & Fractals, 7, 1227 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.