zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A generalized multi-component Glachette-Johnson (GJ) hierarchy and its integrable coupling system. (English) Zbl 1048.37063
Summary: A new loop algebra $\widetilde G_M$ is constructed, whose commutation operation defined by us is as simple and straightforward as that in the loop algebra $A_1$. It follows that a general scheme for generating multi-component integrable hierarchies is proposed. As an illustrative example, a new isospectral problem is established by taking advantage of $\widetilde G_M$. A type of multi-component Glachette--Johnson (GJ) hierarchy is obtained. Furthermore, by constructing an expanding loop algebra $\widetilde F_M$ of the loop algebra $\widetilde G_M$, a kind of integrable coupling of the above GJ hierarchy is worked out.

37K10Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies
17B80Applications of Lie algebras to integrable systems
37K30Relations of infinite-dimensional systems with algebraic structures
Full Text: DOI
[1] Tu, G.: J. math. Phys.. 30, No. 2, 330 (1989)
[2] Ablowitz MJ, Clarkson PA. Solitons, nonlinear evolution equations and inverse scattering. SIAM, 1991 · Zbl 0762.35001
[3] Li, Y.: Soliton and integrable system. (1999)
[4] Wadati, M.; Konno, K.; Ichikawa, Y. H.: J. phys. Soc. jpn.. 47, 1698 (1979)
[5] Shimizu, T.; Wadati, M.: Progr. theor. Phys.. 63, 808 (1980)
[6] Wadati, M.: J. phys. Soc. jpn.. 34, 1289 (1973)
[7] Wadati, M.; Sanuki, H.; Konno, K.: J. phys. Soc. jpn.. 53, 417 (1975)
[8] Wadati, M.; Toda, M.: J. phys. Soc. jpn.. 32, 1403 (1972)
[9] Wadati, M.; Konno, K.; Ichikawa, Y. H.: J. phys. Soc. jpn.. 46, 1965 (1979)
[10] Wadati, M.: J. phys. Soc. jpn.. 32, 1681 (1972)
[11] Hirota, R.: J. phys. Soc. jpn.. 35, 286 (1973)
[12] Ma, W.: Chin. ann. Math. A. 12, No. 1, 115 (1992)
[13] Hu, X.: J. phys. A: math. Gen.. 27, 2497 (1994)
[14] Hu, X.: J. phys. A: math. Gen.. 30, 619 (1997)
[15] Fan, E.: Physica A. 301, 105 (2002)
[16] Fan, E.: J. math. Phys.. 41, No. 11, 7769 (2000)
[17] Guo, F.: Acta math. Sini.. 40, No. 6, 801 (1997)
[18] Guo, F.: Acta math. Appl. sini.. 23, No. 2, 181 (2000)
[19] Guo, F.: J. sys. Sci. math. Sci.. 22, No. 1, 36 (2002)
[20] Guo F, Zhang Y. A type of soliton hierarchy and its multi-Hamiltonian strucyures. Acta Math Sini 2004;47(2) in press · Zbl 05114963
[21] Guo, F.; Zhang, Y.: A unified expressing model of the AKNS hierarchy and KN hierarchy, as well as its integrable coupling system. Chaos, solitons & fractals 19, No. 5, 1207 (2004) · Zbl 1057.37059
[22] Tsuchida, T.; Wadati, M.: J. phys. Soc. jpn.. 68, 2241 (1999)
[23] Tsuchida, T.; Wadati, M.: Phys. lett. A. 257, 53 (1999)
[24] Ma, W.; Zhou, R.: Chin. ann. Math. B. 23, No. 3, 373 (2002)
[25] Guo F, Zhang Y. A new loop algebra and a corresponding multi-component integrable hierarchy. JMP 2003;44(12) (to be published) · Zbl 1063.37068
[26] Guo, F.; Zhang, Y.: Acta phys. Sini.. 51, No. 5, 951 (2002)
[27] Zhang, Y.; Zhang, H.: J. math. Phys.. 43, No. 1, 466 (2002)
[28] Zhang, Y.: Phys. lett. A. 299, 543 (2002)
[29] Zhang, Y.; Zhang, H.: J. math. Resear. exposi.. 22, No. 2, 289 (2002)
[30] Zhang, Y.; Yan, Q.: Ann. diff. Eqs.. 18, No. 4, 431 (2002)
[31] Zhang, Y.; Yan, Q.: Chaos, solitons & fractals. 16, 263 (2003)
[32] Fussteiner, B.: Coupling of completely integrable systems: the perturbation bundle. Applications of analytic and geometric methods to nonlinear differential equations, 125 (1993)
[33] Ma, W.; Fuchssteiner, B.: Chaos, solitons & fractals. 7, 1227 (1996)