zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The complex moment problem and subnormality: A polar decomposition approach. (English) Zbl 1048.47500
Summary: It has been known that positive definiteness does not guarantee a bisequence to be a complex moment. However, it turns out that positive definite extendibility does (Theorems 1 and 22), and this is the main theme of this paper. The main tool is, generally understood, polar decomposition. To strengthen applicability of our approach we work out a criterion for positive definite extendibility in a fairly wide context (Theorems 9 and 29). All this enables us to prove characterizations of subnormality of unbounded operators having invariant domain (Theorems 37 and 39) and their further applications (Theorems 41 and 43) and a description of the complex moment problem on real algebraic curves (Theorems 52 and 56). The latter question is completed in the Appendix, in which we relate the complex moment problem to the two-dimensional real one, with emphasis on real algebraic sets.

MSC:
47A57Operator methods in interpolation, moment and extension problems
14P10Semialgebraic sets and related spaces
44A60Moment problems (integral transforms)
47B15Hermitian and normal operators
47B20Subnormal operators, hyponormal operators, etc.
47B35Toeplitz operators, Hankel operators, Wiener-Hopf operators
30E05Moment problems, interpolation problems
WorldCat.org
Full Text: DOI
References:
[1] Akhiezer, N. I.; Glazman, I. M.: Theory of linear operators in Hilbert space. (1981) · Zbl 0467.47001
[2] Aronszajn, N.: Theory of reproducing kernels. Trans. amer. Math. soc. 68, 337-404 (1950) · Zbl 0037.20701
[3] Berberian, S. K.: Notes on spectral theory. (1966) · Zbl 0138.39104
[4] Berg, C.; Christensen, J. P. R.; Jensen, C. U.: A remark on the multidimensional moment problem. Math. ann. 223, 163-169 (1979) · Zbl 0416.46003
[5] Berg, C.; Christensen, J. P. R.; Ressel, P.: Harmonic analysis on semigroups. (1984) · Zbl 0619.43001
[6] Białynicki-Birula, A.; Rosenlicht, M.: Injective morphisms of real algebraic varieties. Proc. amer. Math. soc. 13, 200-203 (1962) · Zbl 0107.14602
[7] Birman, M. S.; Solomiak, M. Z.: Spectral theory of selfadjoint operators in Hilbert space. (1980)
[8] Bisgaard, T. M.: The two-sided complex moment problem. Ark. mat. 27, 23-28 (1989) · Zbl 0696.43004
[9] Bisgaard, T. M.: Extensions of hamburger’s theorem. Semigroup forum 57, 397-429 (1998) · Zbl 0923.47010
[10] Bisgaard, T. M.: On the growth of positive definite double sequences which are not moment squences. Math. nachr. (1997)
[11] Cassier, G.: Problème des moments sur un compact de rnet décomposition de polynômes à plusieurs variables. J. funct. Anal. 58, 254-266 (1984) · Zbl 0556.44006
[12] Choquet, G.: Le problème des moments. (1962) · Zbl 0137.24403
[13] Coddington, E. A.: Formally normal operators having no normal extension. Canad. J. Math. 17, 1030-1040 (1965) · Zbl 0134.31803
[14] Devinatz, A.: Integral representations of positive definite functions, II. Trans. amer. Math. soc. 77, 455-480 (1954) · Zbl 0058.33201
[15] Friedrich, J.: A note on the two-dimensional moment problem. Math. nachr. 121, 285-286 (1985) · Zbl 0578.44006
[16] Fuglede, B.: The multidimensional moment problem. Expo. math. 1, 47-65 (1983) · Zbl 0514.44006
[17] Górniak, J.: Remarks on positive definite operator valued functions in linear spaces. Springer lecture notes 656 (1978)
[18] Jørgensen, P. E. T.: Selfadjoint extension operators commuting with an algebra. Math. Z. 169, 41-62 (1979) · Zbl 0389.47014
[19] Lubin, A.: Weighted shifts and products of subnormal operators. Indiana univ. Math. J. 26, 839-845 (1977) · Zbl 0385.47010
[20] Mcgregor, J. L.: Solvability criteria for certainn. J. approx. Theory 30, 315-333 (1980) · Zbl 0458.41025
[21] Mlak, W.: Dilations of Hilbert space operators (General theory). Dissertationes math. 153, 1-65 (1978)
[22] Mlak, W.: Conditionally positive definite functions on linear spaces. Ann. polon. Math. 42, 187-239 (1983) · Zbl 0546.47005
[23] Nelson, E.: Analytic vectors. Ann. math. 70, 572-615 (1959) · Zbl 0091.10704
[24] Parthasarathy, K. R.: Probability measures on metric spaces. (1967) · Zbl 0153.19101
[25] Phillips, R. S.: The extension of dual subspaces invariant under an algebra. (1961) · Zbl 0115.33003
[26] Phillips, R. S.: On dissipative operators. Van nostrand, reinhold math. Series, vol. 19 2 (1969)
[27] Prokaj, V.; Sebestyén, Z.: On Friedrichs extensions of operators. Acta sci. Math. (Szeged) 62, 243-246 (1996) · Zbl 0863.47010
[28] Putinar, M.: Sur la complexification du problème des moments. CR acad. Sci. Paris ser. I math. 314, 743-745 (1992) · Zbl 0754.44006
[29] Reed, M.; Simon, B.: Methods of modern mathematical physics. (1972) · Zbl 0242.46001
[30] K. Rusek, Polynomial authomorphisms, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1989
[31] Schmüdgen, K.: An example of a positive polynomial which is not a sum of squares of polynomials. A positive, but not strongly positive functional. Math. nachr. 88, 385-390 (1979) · Zbl 0424.46041
[32] Schmüdgen, K.: A formally normal operator having no normal extension. Proc. amer. Math. soc. 95, 503-504 (1985) · Zbl 0613.47002
[33] Schmügden, K.: Thek. Math. ann. 289, 203-206 (1991)
[34] Sebestyén, Z.; Stochel, J.: Restrictions of positive self-adjoint operators. Acta sci. Math. (Szeged) 55, 149-154 (1991) · Zbl 0897.47015
[35] Shohat, J. A.; Tamarkin, J. D.: The problem of moments. Math. surveys 1 (1943) · Zbl 0063.06973
[36] Skau, C. F.: Positive selfadjoint extensions of operators affiliated with a von Neumann algebra. Math. scand. 44, 171-195 (1979) · Zbl 0414.46041
[37] Slinker, S. P.: On commuting selfadjoint extensions of unbounded operators. Indiana univ. Math. J. 27, 629-636 (1978) · Zbl 0418.47011
[38] Stochel, J.: Moment functions on real algebraic sets. Ark. mat. 30, 133-148 (1992) · Zbl 0819.47015
[39] Stochel, J.; Szafraniec, F. H.: A characterization of subnormal operators. Oper. theory adv. Appl. 14 (1984) · Zbl 0563.47018
[40] Stochel, J.; Szafraniec, F. H.: On normal extensions of unbounded operators, I. J. oper. Theory 14, 31-55 (1985) · Zbl 0613.47022
[41] Stochel, J.; Szafraniec, F. H.: On normal extensions of unbounded operators, II. Acta sci. Math. (Szeged) 53, 153-177 (1989) · Zbl 0698.47003
[42] Stochel, J.; Szafraniec, F. H.: The normal part of an unbounded operator. Nederl. akad. Wetensch. proc. Ser. A 92, 495-503 (1989) · Zbl 0699.47020
[43] Stochel, J.; Szafraniec, F. H.: A few assorted questions about unbounded subnormal operators. Univ, iagel. Acta math. 28, 163-170 (1991) · Zbl 0748.47015
[44] Stochel, J.; Szafraniec, F. H.: Algebraic operators and moments on algebraic sets. Portugal math. 51, 25-45 (1994) · Zbl 0815.47058
[45] Stone, M. H.: Linear transformations in Hilbert space and their applications to analysis. Amer. math. Soc. colloq. Publ. 15 (1932) · Zbl 0005.40003
[46] Szafraniec, F. H.: Boundedness of the shift operator related to positive definite forms: an application to moment problems. Ark. math. 19, 251-259 (1981) · Zbl 0504.47030
[47] Szafraniec, F. H.: Unbounded subnormal operators. Why?. Univ. iagel. Acta math. 34, 149-152 (1997) · Zbl 0948.47027
[48] Sz.-Nagy, B.: Spektraldarstellung linearer transformationen des hilbertschen raumes. Ergeb. math. Grenzgeb. 5 (1942) · Zbl 68.0241.01
[49] Sz.-Nagy, B.: Extensions of linear transformations in Hilbert space which extend beyond this space. (1960)
[50] Trent, T. T.: New conditions for subnormality. Pacific J. Math. 93, 459-464 (1981) · Zbl 0471.47015
[51] Weidmann, J.: Linear operators in Hilbert spaces. (1980) · Zbl 0434.47001