zbMATH — the first resource for mathematics

Theorems of Gauss-Bonnet and Chern-Lashof types in a simply connected symmetric space of non-positive curvature. (English) Zbl 1048.53041
The Gauss-Bonnet and Chern-Lashof theorems for an \(n\)-dimensional compact immersed submanifold \(M\) in the \(m\)-dimensional Euclidean space \(\mathbb{R}^m\) involving the Euler characteristic \(\chi(M)\) and the \(k\)th Betti numbers \(b_k(M,F)\), are generalized to compact submanifolds in a simply connected symmetric space \(N\) of non-positive curvature. (It is noted that an inequality of Chern-Lashof type is obtained for the case \(N= H^m(-1)\) by E. Teufel in [Colloq. Math. Soc. János Bolyai 46, 1201–1209 (1988; Zbl 0637.53076)]). The proofs are performed by applying the Morse theory to squared distance functions. The corollaries are made for the cases when \(N\) is \(FH^m(c)\), where \(F= \mathbb{R}\), \(\mathbb{C}\), \(\mathbb{H}\) or Cay and \(m= 2\) when \(F= \text{Cay}\). As an example the geodesic sphere in \(FH^m(c)\) is considered.

53C40 Global submanifolds
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53C35 Differential geometry of symmetric spaces
Full Text: DOI
[1] S.S. Chern and R.K. Lashof, On the total curvature of immersed manifolds I, Amer. J. Math., 79 (1957), 306-318. JSTOR: · Zbl 0078.13901
[2] S.S. Chern and R. K. Lashof, On the total curvature of immersed manifolds II, Michigan Math. J., 5 (1958), 5-12. · Zbl 0095.35803
[3] D. Ferus, Totale Absolutkr\(\ddot u\)mmung in Differentialgeometrie und -topologie , Lecture Notes 66 , Springer (1968). · Zbl 0201.23801
[4] S. Helgason, Differential geometry\(,\) Lie groups and symmetric spaces , Academic Press (1978). · Zbl 0451.53038
[5] N. Koike, The Lipschitz-Killing curvature for an equiaffine immersion and theorems of Gauss-Bonnet type and Chern-Lashof type, Results Math., 39 (2001), 230-244. · Zbl 1033.53010
[6] N. Koike, The total absolute curvature of an equiaffine immersion, Results Math., 42 (2002), 81-106. · Zbl 1071.53007
[7] N. Koike, Tubes of nonconstant radius in a symmetric space, Kyushu J. of Math., 56 (2002), 267-291. · Zbl 1027.53053
[8] N.H. Kuiper, Minimal total absolute curvature for immersions, Invent. Math., 10 (1970), 209-238. · Zbl 0195.51102
[9] N.H. Kuiper, Tight embeddings and maps. Submanifolds of geometrical class three in \(E^n\), The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979) Springer (1980), 97-145. · Zbl 0461.53033
[10] J. Milnor, Morse theory , Ann. Math. Stud. 51 (1963), Princeton University Press. · Zbl 0108.10401
[11] K. Nomizu and L. Rodriguez, Umbilical submanifolds and Morse functions, Nagoya Math. J., 48 (1972), 197-201. · Zbl 0246.53050
[12] C.L. Terng and G. Thorbergsson, Submanifold geometry in symmetric spaces, J. Differential Geom., 42 (1995), 665-718. · Zbl 0845.53040
[13] E. Teufel, Differential topology and the computation of total absolute curvature, Math. Ann., 258 (1982), 471-480. · Zbl 0464.53049
[14] E. Teufel, On the total absolute curvature of immersions into hyperbolic spaces, Topic in Differential Geometry Vol II , North-Holland (1988), 1201-1210. · Zbl 0637.53076
[15] T.J. Willmore and B.A. Saleemi, The total absolute curvature of immersed manifolds, J. London Math. Soc., 41 (1966), 153-160. · Zbl 0136.42902
[16] T.J. Willmore, Total curvature in Riemannian geometry , Ellis-Horwood (1982). · Zbl 0501.53038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.