Cai, T. Tony; Low, Mark G. Minimax estimation of linear functionals over nonconvex parameter spaces. (English) Zbl 1048.62054 Ann. Stat. 32, No. 2, 552-576 (2004). Summary: The minimax theory for estimating linear functionals is extended to the case of a finite union of convex parameter spaces. Upper and lower bounds for the minimax risk can still be described in terms of a modulus of continuity. However, in contrast to the theory for convex parameter spaces, rate optimal procedures are often required to be nonlinear. A construction of such nonlinear procedures is given. The results developed in this paper have important applications to the theory of adaptation. Cited in 21 Documents MSC: 62G99 Nonparametric inference 62C20 Minimax procedures in statistical decision theory 62F12 Asymptotic properties of parametric estimators 62M99 Inference from stochastic processes Keywords:constrained risk inequality; linear functionals; minimax estimation; modulus of continuity; nonparametric functional estimation; white noise model × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Abramovich, F., Benjamini, Y., Donoho, D. and Johnstone, I. (2000). Adapting to unknown sparsity by controlling the false discovery rate. Technical report 2000-19, Dept. Statistics, Stanford Univ. · Zbl 1092.62005 [2] Baraud, Y. (2000). Nonasymptotic minimax rates of testing in signal detection. Technical report, Ecole Normale Supérieure. · Zbl 1007.62042 [3] Brown, L. D. and Low, M. G. (1996). A constrained risk inequality with applications to nonparametric functional estimation. Ann. Statist. 24 2524–2535. · Zbl 0867.62023 · doi:10.1214/aos/1032181166 [4] Cai, T. and Low, M. (2002). On modulus of continuity and adaptability in nonparametric functional estimation. Technical report, Dept. Statistics, Univ. Pennsylvania. [5] Donoho, D. L. (1994). Statistical estimation and optimal recovery. Ann. Statist. 22 238–270. JSTOR: · Zbl 0805.62014 · doi:10.1214/aos/1176325367 [6] Donoho, D. L., Johnstone, I. M., Hoch, J. C. and Stern, A. S. (1992). Maximum entropy and the nearly black object (with discussion). J. Roy. Statist. Soc. Ser. B 54 41–81. · Zbl 0788.62103 [7] Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1995). Wavelet shrinkage: Asymptopia? J. Roy. Statist. Soc. Ser. B 57 301–369. · Zbl 0827.62035 [8] Donoho, D. L. and Liu, R. C. (1991a). Geometrizing rates of convergence. II. Ann. Statist. 19 633–667. · Zbl 0754.62028 · doi:10.1214/aos/1176348114 [9] Donoho, D. L. and Liu, R. G. (1991b). Geometrizing rates of convergence. III. Ann. Statist. 19 668–701. · Zbl 0754.62029 · doi:10.1214/aos/1176348115 [10] Efromovich, S. and Low, M. G. (1994). Adaptive estimates of linear functionals. Probab. Theory Related Fields 98 261–275. · Zbl 0796.62037 · doi:10.1007/BF01192517 [11] Feller, W. (1968). An Introduction to Probability Theory and Its Applications 1 , 3rd ed. Wiley, New York. · Zbl 0155.23101 [12] Ibragimov, I. A. and Has’minskii, R. Z. (1984). Nonparametric estimation of the value of a linear functional in Gaussian white noise. Theory Probab. Appl. 29 18–32. · Zbl 0575.62076 · doi:10.1137/1129002 [13] Lepski, O. V. (1990). On a problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl. 35 454–466. · Zbl 0725.62075 [14] Low, M. G. (1995). Bias-variance tradeoffs in functional estimation problems. Ann. Statist. 23 824–835. JSTOR: · Zbl 0838.62006 · doi:10.1214/aos/1176324624 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.