zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Parameter estimation in stochastic grey-box models. (English) Zbl 1048.93088
Summary: An efficient and flexible parameter estimation scheme for grey-box models in the sense of discretely, partially observed Itô stochastic differential equations with measurement noise is presented along with a corresponding software implementation. The estimation scheme is based on the extended Kalman filter and features maximum likelihood as well as maximum a posteriori estimation on multiple independent data sets, including irregularly sampled data sets and data sets with occasional outliers and missing observations. The software implementation is compared to an existing software tool and proves to have better performance both in terms of quality of estimates for nonlinear systems with significant diffusion and in terms of reproducibility. In particular, the new tool provides more accurate and more consistent estimates of the parameters of the diffusion term.

93E10Estimation and detection in stochastic control
93A30Mathematical modelling of systems
60H10Stochastic ordinary differential equations
Full Text: DOI
[1] Allgöwer, F., & Zheng, A. (Eds.) (2000). Nonlinear model predictive control, Progress in systems & control theory, Vol. 26. Switzerland: Birkhauser Verlag.
[2] åström, K. J.: Introduction to stochastic control theory. (1970) · Zbl 0226.93027
[3] Bak, J.; Madsen, H.; Nielsen, H. A.: Goodness of fit of stochastic differential equations. Symposium i anvendt statistik (1999)
[4] Bitmead, R. R.; Gevers, M.; Wertz, V.: Adaptive optimal control--the thinking man’s gPC. (1990) · Zbl 0751.93052
[5] Bohlin, T. (2001). A grey-box process identification tool: Theory and practice. Technical Report IR-S3-REG-0103, Department of Signals, Sensors and Systems, Royal Institute of Technology, Stockholm, Sweden.
[6] Bohlin, T.; Graebe, S. F.: Issues in nonlinear stochastic grey-box identification. International journal of adaptive control and signal processing 9, 465-490 (1995)
[7] Dennis, J. E.; Schnabel, R. B.: Numerical methods for unconstrained optimization and nonlinear equations. (1983) · Zbl 0579.65058
[8] Holst, J., Holst, U., Madsen, H., & Melgaard, H. (1992). Validation of grey box models. In L. Dugard, M. M’Saad, & I. D. Landau (Eds.), Selected papers from the fourth IFAC symposium on adaptive systems in control and signal processing (pp. 407-414). Oxford: Pergamon Press.
[9] Huber, P. J.: Robust statistics. (1981) · Zbl 0536.62025
[10] Jacobsen, J. L.; Madsen, H.: Grey box modelling of oxygen levels in a small stream. Environmetrics 7, No. 1, 109-121 (1996)
[11] Jazwinski, A. H.: Stochastic processes and filtering theory. (1970) · Zbl 0203.50101
[12] Kloeden, P. E.; Platen, E.: Numerical solution of stochastic differential equations. (1992) · Zbl 0752.60043
[13] Kristensen, N. R., & Madsen, H. (2003). Continuous time stochastic modelling--CTSM 2.2. Technical University of Denmark, Lyngby, Denmark.
[14] Kristensen, N. R., Madsen, H., & Jørgensen, S. B. (2001). Computer aided continuous time stochastic process modelling. In R. Gani, & S. B. Jørgensen (Eds.), European symposium on computer aided process engineering, Vol. 11. Amsterdam: Elsevier.
[15] Kristensen, N. R., Madsen, H., & Jørgensen, S. B. (2002). Using continuous time stochastic modelling and nonparametric statistics to improve the quality of first principles models. In J. Grievink, & J. van Schijndel (Eds.), European symposium on computer aided process engineering, Vol. 12. Amsterdam: Elsevier.
[16] Kristensen, N. R., Madsen, H., & Jørgensen, S. B. (2004). A method for systematic improvement of stochastic grey-box models. Computers and Chemical Engineering (in press).
[17] Ljung, L.: System identification: theory for the user. (1987) · Zbl 0615.93004
[18] Madsen, H.; Holst, J.: Estimation of continuous-time models for the heat dynamics of a building. Energy and buildings 22, 67-79 (1995)
[19] Moler, C.; Van Loan, C. F.: Nineteen dubious ways to compute the exponential of a matrix. SIAM review 20, No. 4, 801-836 (1978) · Zbl 0395.65012
[20] Nielsen, J. N.; Madsen, H.: Applying the EKF to stochastic differential equations with level effects. Automatica 37, 107-112 (2001) · Zbl 0982.93070
[21] Nielsen, J. N.; Madsen, H.; Young, P. C.: Parameter estimation in stochastic differential equationsan overview. Annual reviews in control 24, 83-94 (2000)
[22] Söderström, T.; Stoica, P.: System identification. (1989) · Zbl 0695.93108
[23] Unbehauen, H.; Rao, G. P.: Continuous-time approaches to system identification--A survey. Automatica 26, No. 1, 23-35 (1990) · Zbl 0714.93007
[24] Unbehauen, H.; Rao, G. P.: A review of identification in continuous-time systems. Annual reviews in control 22, 145-171 (1998) · Zbl 0934.93018
[25] Van Loan, C. F.: Computing integrals involving the matrix exponential. IEEE transactions on automatic control 23, No. 3, 395-404 (1978) · Zbl 0387.65013
[26] Young, P. C.: Parameter estimation for continuous-time models--A survey. Automatica 17, No. 1, 23-39 (1981) · Zbl 0451.93052