×

zbMATH — the first resource for mathematics

Cauchy problem for some semilinear evolution equations. (English) Zbl 1049.35075
The paper deals with semilinear evolution equations involving hyperbolic and Schrödinger equations as well. The maximum order is specified of the derivatives in the nonlinear part which yields well-posedness of the Cauchy problem in Sobolev spaces of the evolution equations. An example is given to show that the well-posedness may fail if that order is exceeded.

MSC:
35G10 Initial value problems for linear higher-order PDEs
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35G05 Linear higher-order PDEs
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] AGLIARDI R.: Cauchy problem for non-kowalewskian equations. Internat. J. Math. 6 (1995), 791-804. · Zbl 0844.35003
[2] AGLIARDI R.: Cauchy problem for evolution equations of Schrodinger type. J. Differential Equations 180 (2002), 89-98. · Zbl 1056.35043
[3] DIONNE P.: Sur les problémes de Cauchy hyperboliques bien posés. J. Anal. Math. 10 (1962), 1-90. · Zbl 0112.32301
[4] IVRII V. YA.-PETKOV V. M.: Necessary conditions for the Cauchy problem for non strictly hyperbolic equations to be well posed. Uspekhi Mat. Nauk. 29 (1974), 3-70. · Zbl 0312.35049
[5] LEVI E. E.: Caratteristiche multiple e problema di Cauchy. Ann. Mat. Pura Appl. (4) 16 (1909), 161-201. · JFM 40.0415.02
[6] MIZOHATA S.: Lectures on Cauchy Problem. Tata Inst. of Fund. Research Lectures on Mathematics and Physics. Mathematics. Vol. 35, Tata Inst, of Fund. Research, Bombay, 1965. · Zbl 0176.08502
[7] MIZOHATA S.-OHYA Y.: Sur la condition de E. E. Levi concernent des equations hyperboliques. Publ. Res. Inst. Math. Sci. 4 (1968), 511-526. · Zbl 0202.37401
[8] MOSER J.: A rapidly convergent interaction method and non-linear partial differential equations. Ann. Scuola Norm. Sup. Pisa CI. Sci. (4) 20 (1966), 256-315. · Zbl 0144.18202
[9] TAKEUCHI J.: A necessary condition for the well-posedness of the Cauchy problem for a certain class of evolution equations. Proc. Japan. Acad. 50 (1974), 133-137. · Zbl 0308.35061
[10] TAKEUCHI J.: Some remarks on my paper ”On the Cauchy problem for some non-kowalewskian equations with distinct characteristic roots”. J. Math. Kyoto Univ. 24 (1984), 741-754. · Zbl 0572.35020
[11] TAKEUCHI J.: Le Probleme de Cauchy pour Certaines Equations aux Derivees Partielles du Type de Schrodinger. These de Doctorat de l’Universite Paris 6, 1995.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.