×

Rademacher chaos: tail estimates versus limit theorems. (English) Zbl 1049.60007

Summary: We study Rademacher chaos indexed by a sparse set which has a fractional combinatorial dimension. We obtain tail estimates for finite sums and a normal limit theorem as the size tends to infinity. The tails for finite sums may be much larger than the tails of the limit.

MSC:

60C05 Combinatorial probability
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beckner, W., Inequalities in Fourier analysis,Ann. of Math. 102 (1975), 159–182. · Zbl 0338.42017
[2] Blei, R.,Analysis in Integer and Fractional Dimensions. Cambridge Studies in Advanced Mathematics71, Cambridge Univ. Press, Cambridge, UK, 2001. · Zbl 1006.46001
[3] Blei, R. andJanson, S., Rademacher chaos: tail estimates vs limit theorems,Preprint, Institut Mittag-Leffler, Djursholm, 2001/2002.
[4] Bonami, A., Étude des coefficients de Fourier des fonctions deL p (G),Ann. Inst. Fourier (Grenoble) 20 (1970), 335–402. · Zbl 0195.42501
[5] Davie, A. M., Quotient algebras of uniform algebras,J. London Math. Soc. 7 (1973), 31–40. · Zbl 0264.46055
[6] Hanson, D. L. andWright, F. T., A bound on tail probabilities for quadratic forms in independent random variables,Ann. Math. Statist. 42 (1971), 1079–1083. · Zbl 0216.22203
[7] Hitczenko, P., Domination inequality for martingale transforms of a Rademacher sequence,Israel J. Math. 84 (1993), 161–178. · Zbl 0781.60037
[8] Janson, S., A functional limit theorem for random graphs with applications to subgraph count statistics,Random Structures Algorithms 1 (1990), 15–37. · Zbl 0708.05052
[9] Janson, S.,Orthogonal Decompositions and Functional Limit Theorems for Random Graph Statistics, Memoirs Amer. Math. Soc.534, Amer. Math. Soc., Providence, RI, 1994. · Zbl 0810.05001
[10] Janson, S.,Gaussian Hilbert Spaces, Cambridge Tracts in Mathematics129, Cambridge Univ. Press, Cambridge, 1997.
[11] Johnson, G. W. andWoodward, G. S., Onp-Sidon sets,Indiana Univ. Math. J. 24 (1974/75), 161–167.
[12] Kwapień, S. andWoyczyński, W. A.,Random Series and Stochastic Integrals: Single and Multiple, Birkhäuser, Boston, MA, 1992. · Zbl 0751.60035
[13] Latała, R., Tail and moment estimates for some types of chaos,Studia Math. 135 (1999), 39–53. · Zbl 0935.60009
[14] Littlewood, J. E., On bounded bilinear forms in an infinite number of variables,Q. J. Math. 1 (1930), 164–174. · JFM 56.0335.01
[15] McLeish, D. L., Dependent central limit theorems and invariance principles,Ann. Probab. 2 (1974), 620–628. · Zbl 0287.60025
[16] Montgomery-Smith, S. J., The distribution of Rademacher sums,Proc. Amer. Math. Soc. 109 (1990), 517–522. · Zbl 0696.60013
[17] Nelson, E., The free Markoff field,J. Funct. Anal. 12 (1973), 211–227. · Zbl 0273.60079
[18] de la Peña, V. H. andGiné, E.,Decoupling. From Dependence to Independence. Randomly Stopped Processes. U-statistics and Processes. Martingales and Beyond, Springer-Verlag, New York, 1999.
[19] Rademacher, H., Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen,Math. Ann. 87 (1922), 112–138. · JFM 48.0485.05
[20] Rubin, H. andVitale, R. A., Asymptotic distribution of symmetric statistics,Ann. Statist. 8 (1980), 165–170. · Zbl 0422.62016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.