Convergence of functionals of sums of r.v.s to local times of fractional stable motions. (English) Zbl 1049.60019

The author studies the asymptotical properties of the process \((\beta_n/n)\sum_{k=1}^{[nt]}f (\beta_n(S_k/\gamma_n+ x)),\) where \(S_k=\sum_{j=1}^k\sum_{m=0}^\infty c_m\xi_{j-m},\) \((c_m)\) is a sequence of constants, \((\xi_j)\) is a sequence of i.i.d. random variables belonging to the domain of attraction of a strictly stable law with index \(0<\alpha\leq 2,\) \((\beta_n)\) is a sequence of constants such that \(\beta_n\to\infty,\) \(\beta_n/n\to 0.\) The limiting distribution is written in terms of the local time of the linear fractional stable motion. The only conditions on the distribution of \(\xi_1\) are Cramer’s condition and the existence of nonzero absolutely continuous components.


60F05 Central limit and other weak theorems
60G18 Self-similar stochastic processes
60J55 Local time and additive functionals
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62J02 General nonlinear regression
Full Text: DOI arXiv


[1] Akonom, J. (1993). Comportement asymptotique du temps d’occupation du processus des sommes partielles. Ann. Inst. H. Poincaré 29 57–81. · Zbl 0767.60069
[2] Astrauskas, A. (1983). Limit theorems for sums of linearly generated random variables. Lithuanian Math. J. 23 127–134. · Zbl 0536.60005
[3] Bhattacharya, R. N. and Ranga Rao, R. (1976). Normal Approximation and Asymptotic Expansions . Wiley, New York. · Zbl 0331.41023
[4] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation . Cambridge Univ. Press. · Zbl 0617.26001
[5] Borodin, A. N. and Ibragimov, I. A. (1995). Limit theorems for functionals of random walks. Proc. Steklov Inst. Math. 195 . · Zbl 0855.60001
[6] Gikhman, I. I. and Skorokhod, A. V. (1969). Introduction to the Theory of Random Processes. Saunders, Philadelphia. · Zbl 0132.37902
[7] Ibragimov, I. A. (1984). Some limit theorems for functionals of a random walk. Dokl. Akad. Nauk. SSSR 276 1049–1052. · Zbl 0591.60018
[8] Ibragimov, I. A. (1985). Théorèmes limites pour les marches aléatoires. École d’Été de Probabilités de Saint Flour XIII. Lecture Notes in Math. 1117 199–297. Springer, Berlin. · Zbl 0561.60030
[9] Kasahara, Y. and Maejima, M. (1988). Weighted sums of i.i.d. random variables attracted to integrals of stable processes. Probab. Theory Related Fields 78 75–96. · Zbl 0627.60039
[10] Kôno, N. and Maejima, M. (1991). Self-similar stable processes with stationary increments. In Stable Processes and Related Topics (S. Cambanis, G. Samorodnitsky and M. S. Taqqu, eds.) 265–295. Birkhäuser, Boston. · Zbl 0728.60041
[11] LeCam, L. (1960). Locally asymptotically normal families of distributions. Univ. Calif. Publ. Stat ist. 3 27–98.
[12] Maejima, A. (1989). Self-similar processes and limit theorems. Sugaku Expositions 2 103–123. · Zbl 0686.60032
[13] Park, J. Y. and Phillips, P. C. B. (1999). Asymptotics for nonlinear transformations of integrated time series. Econometric Theory 15 269–298. · Zbl 0964.62092
[14] Park, J. Y. and Phillips, P. C. B. (2001). Nonlinear regressions with integrated time series. Econometrica 69 117–161. · Zbl 0999.62050
[15] Prohorov, Yu. V. (1952). A local theorem for densities. Dokl. Akad. Nauk. SSSR 83 797–800. · Zbl 0046.35301
[16] Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance . Chapman and Hall, New York. · Zbl 0925.60027
[17] Skorokhod, A. V. and Slobodenjuk, N. P. (1970). Limit Theorems for Random Walks . Naukova Dumka, Kiev.
[18] Tyurin, K. and Phillips, P. C. B. (1999). The occupation density of fractional Brownian motion and some of its applications. Working paper, Dept. Economics, Yale Univ.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.