zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the foundations of multivariate heavy-tail analysis. (English) Zbl 1049.62056
Univariate heavy-tailed analysis rests on the analytic notion of regularly varying functions. For multivariate heavy-tailed analysis, reliance on functions is awkward because multivariate distribution functions are not natural objects for many purpuses and are difficult to manipulate. An approach based on vague convergence of measures makes the differences between univariute and multivariate analysis evaporate. We survey the foundations of the subject and discuss statistical attempts to assess dependence of large values. An exploratory technique is applied to exchange rate return data and shows clear differences in the dependence structure of large values for the Japanese Yen versus German Mark compared with the French Franc versus the German Mark.

MSC:
62G32Statistics of extreme values; tail inference
62P05Applications of statistics to actuarial sciences and financial mathematics
62H99Multivariate analysis
60F05Central limit and other weak theorems
62H05Characterization and structure theory (Multivariate analysis)
WorldCat.org
Full Text: DOI
References:
[1] Basrak, B. (2000). The sample autocorrelation function of non-linear time series. Doctoral Thesis, Rijksuniversiteit Groningen.
[2] Basrak, B., Davis, R. A. and Mikosch, T. (2002). A characterization of multivariate regular variation. Ann. Appl. Prob. 12 , 908--920. · Zbl 1070.60011 · doi:10.1214/aoap/1031863174
[3] Billingsley, P. (1999). Convergence of Probability Measures , 2nd edn. John Wiley, New York. · Zbl 0944.60003
[4] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation . Cambridge University Press. · Zbl 0617.26001
[5] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31 , 307--327. · Zbl 0865.62085 · doi:10.1016/S0304-4076(95)01749-6
[6] Bollerslev, T., Chow, R. Y. and Kroner, K. F. (1992). ARCH modeling in finance: a review of the theory and empirical evidence. J. Econometrics 52 , 5--59. · Zbl 0825.90057 · doi:10.1016/0304-4076(92)90064-X
[7] Crovella, M. and Bestavros, A. (1995). Explaining world wide web traffic self-similarity. Preprint, TR-95-015, Boston University. Available at http://wwww.cs.bu.edu/faculty/crovella/.
[8] Crovella, M. and Bestavros, A. (1996). Self-similarity in world wide web traffic: evidence and possible causes. Performance Evaluation Rev. 24 , 160--169.
[9] Crovella, M. and Bestavros, A. (1997). Self-similarity in world wide web traffic: evidence and possible causes. IEEE/ACM Trans. Networking 5 , 835--846.
[10] Crovella, M., Bestavros, A. and Taqqu, M. S. (1999). Heavy-tailed probability distributions in the world wide web. In A Practical Guide to Heavy Tails: Statistical Techniques and Applications , eds M. S. Taqqu, R. Adler and R. Feldman, Birkhäuser, Boston, MA, pp. 3--26.
[11] Csörgő, S. and Mason, D. (1985). Central limit theorems for sums of extreme values. Math. Proc. Camb. Phil. Soc. 98 , 547--558. · Zbl 0581.60025 · doi:10.1017/S0305004100063751
[12] Csörgő, S, Deheuvels, P. and Mason, D. (1985). Kernel estimates for the tail index of a distribution. Ann. Statist. 13 , 1050--1077. JSTOR: · Zbl 0588.62051 · doi:10.1214/aos/1176349656 · http://links.jstor.org/sici?sici=0090-5364%28198509%2913%3A3%3C1050%3AKEOTTI%3E2.0.CO%3B2-W&origin=euclid
[13] Cunha, C., Bestavros, A. and Crovella, M. (1995). Characteristics of www client-based traces. Preprint TR-95-010, Boston University. Available at http://www.cs.bu.ede/faculty/crovella/.
[14] Davis, R. A. and Mikosch, T. (1998). The sample autocorrelations of heavy-tailed processes with applications to ARCH. Ann. Statist. 26 , 2049--2080. · Zbl 0929.62092 · doi:10.1214/aos/1024691368
[15] De Haan, L. and Omey, E. (1984). Integrals and derivatives of regularly varying functions in $\mathbbR^d$ and domains of attraction of stable distributions, II. Stoch. Process. Appl. 16 , 157--170. · Zbl 0528.60021 · doi:10.1016/0304-4149(84)90016-4
[16] De Haan, L. and Resnick, S. I. (1977). Limit theory for multivariate sample extremes. Z. Wahrscheinlichkeitsth. 40 , 317--337. · Zbl 0375.60031 · doi:10.1007/BF00533086
[17] De Haan, L. and Resnick, S. I. (1978/79). Derivatives of regularly varying functions in $\mathbbR^d$ and domains of attraction of stable distributions. Stoch. Process. Appl. 8 , 349--355. · Zbl 0398.60013 · doi:10.1016/0304-4149(79)90009-7
[18] De Haan, L. and Resnick, S. I. (1987). On regular variation of probability densities. Stoch. Process. Appl. 25 , 83--95. · Zbl 0625.60022 · doi:10.1016/0304-4149(87)90191-8
[19] De Haan, L. and Resnick, S. I. (1998). On asymptotic normality of the Hill estimator. Stoch. Models 14 , 849--867. · Zbl 1002.60519 · doi:10.1080/15326349808807504
[20] De Haan, L., Omey, E. and Resnick, S. (1984). Domains of attraction and regular variation in $\mathbbR^d$. J. Multivariate Anal. 14 , 17--33. · Zbl 0536.60027 · doi:10.1016/0047-259X(84)90045-9
[21] Drees, H. (1998). Estimating the extreme value index. Doctoral Thesis, University of Cologne. · Zbl 0929.62034
[22] Drees, H., de Haan, L. and Resnick, S. (2000). How to make a Hill plot. Ann. Statist. 28 , 254--274. · Zbl 1106.62333 · doi:10.1214/aos/1016120372 · euclid:aos/1016120372
[23] Duffy, D. E., McIntosh, A. A., Rosenstein, M. and Willinger, W. (1993). Analyzing telecommunications traffic data from working common channel signaling subnetworks. In Computing Science and Statistics Interface (Proc. 25th Symp. Interface San Diego, CA), eds M. E. Tarter and M. D. Lock, pp. 156--165.
[24] Einmahl, J., de Haan, L. and Piterbarg, V. (2001). Nonparametric estimation of the spectral measure of an extreme value distribution. Ann. Statist. 29 , 1401--1423. · Zbl 1043.62046 · doi:10.1214/aos/1013203459
[25] Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50 , 987--1008. · Zbl 0491.62099 · doi:10.2307/1912773
[26] Finkenstädt, B. and Rootzén, H. (eds) (2003). Extreme Values in Finance, Telecommunications, and the Environment (Proc. 5th SemStat, Sém. Europ. Statist., Gothenburg, 2001). Chapman and Hall/CRC, Boca Raton, FL. · Zbl 1020.00022
[27] Geluk, J. L. and de Haan, L. (1987). Regular Variation, Extensions and Tauberian Theorems (CWI Tract 40 ). Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam. · Zbl 0624.26003
[28] Goldie, C. M. (1991). Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Prob. 1 , 126--166. JSTOR: · Zbl 0724.60076 · doi:10.1214/aoap/1177005985 · http://links.jstor.org/sici?sici=1050-5164%28199102%291%3A1%3C126%3AIRTATO%3E2.0.CO%3B2-4&origin=euclid
[29] Kesten, H. (1973). Random difference equations and renewal theory for products of random matrices. Acta Math. 131 , 207--248. · Zbl 0291.60029 · doi:10.1007/BF02392040
[30] Crovella, M., Kim, G. and Park, K. (1996). On the relationship between file sizes, transport protocols, and self-similar network traffic. In Proc. 4th Internat. Conf. Network Protocols (ICNP’96) , pp. 171--180.
[31] Leland, W. E., Taqqu, M. S., Willinger, W. and Wilson, D. V. (1993). Statistical analysis of high time-resolution ethernet Lan traffic measurements. In Computer Science and Statistics Interface (Proc. 25th Symp. Interface, San Diego, CA), eds M. E. Taylor and M. D. Lock, pp. 146--155.
[32] Mason, D. (1982). Laws of large numbers for sums of extreme values. Ann. Prob. 10 , 754--764. JSTOR: · Zbl 0493.60039 · doi:10.1214/aop/1176993783 · http://links.jstor.org/sici?sici=0091-1798%28198208%2910%3A3%3C754%3ALOLNFS%3E2.0.CO%3B2-%23&origin=euclid
[33] Mason, D. (1988). A strong invariance theorem for the tail empirical process. Ann. Inst. H. Poincaré Prob. Statist. 24 , 491--506. · Zbl 0664.60038 · numdam:AIHPB_1988__24_4_491_0 · eudml:77336
[34] Mason, D. and Turova, T. (1994). Weak convergence of the Hill estimator process. In Extreme Value Theory and Applications , eds J. Galambos, J. Lechner, and E. Simiu, Kluwer, Dordrecht, pp. 419--432.
[35] Mikosch, T. (2003). Modeling dependence and tails of financial time series. In Extreme Values in Finance, Telecommunications, and the Environment (SemStat, Gothenburg, 2001), eds B. Finkenstädt and H. Rootzén, Chapman and Hall/CRC, Boca Raton, FL, pp. 185--286.
[36] Reiss, R.-D. and Thomas, M. (2001). Statistical Analysis of Extreme Values , 2nd edn. Birkhäuser, Basel. · Zbl 1002.62002
[37] Resnick, S. (1971). Tail equivalence and its applications. J. Appl. Prob. 8 , 136--156. · Zbl 0217.49903
[38] Resnick, S. (1986). Point processes, regular variation and weak convergence. Adv. Appl. Prob. 18 , 66--138. · Zbl 0597.60048 · doi:10.2307/1427239
[39] Resnick, S. (1987). Extreme Values, Regular Variation and Point Processes . Springer, New York. · Zbl 0633.60001
[40] Resnick, S. (1997). Discussion of the Danish data on large fire insurance losses. ASTIN Bull. 27 , 139--151.
[41] Resnick, S. (1997). Heavy tail modeling and teletraffic data. Ann. Statist. 25 , 1805--1869. · Zbl 0942.62097 · doi:10.1214/aos/1069362376
[42] Resnick, S. (2003). Modeling data networks. In Extreme Values in Finance, Telecommunications, and the Environment (SemStat, Gothenburg, 2001), eds B. Finkenstädt and H. Rootzén, Chapman and Hall/CRC, Boca Raton, FL, pp. 287--372.
[43] Resnick, S. and Stărică, C. (1995). Consistency of Hill’s estimator for dependent data. J. Appl. Prob. 32 , 139--167. · Zbl 0836.60020 · doi:10.2307/3214926
[44] Resnick, S. and Stărică, C. (1997). Asymptotic behavior of Hill’s estimator for autoregressive data. Stoch. Models 13 , 703--723. · Zbl 1047.62079 · doi:10.1080/15326349708807448
[45] Resnick, S. and Stărică, C. (1997). Smoothing the Hill estimator. Adv. Appl. Prob. 29 , 271--293. · Zbl 0873.60021 · doi:10.2307/1427870
[46] Resnick, S. and Stărică, C. (1998). Tail index estimation for dependent data. Ann. Appl. Prob. 8 , 1156--1183. · Zbl 0942.60037 · doi:10.1214/aoap/1028903376
[47] Seneta, E. (1976). Regularly Varying Functions (Lecture Notes Math. 508 ). Springer, New York. · Zbl 0324.26002 · doi:10.1007/BFb0079658
[48] Sinha, A. K. (1997). Estimating failure probability when failure is rare: multidimensional case. Doctoral Thesis, Tinbergen Institute, Erasmus University Rotterdam.
[49] Stărică, C. (1999). Multivariate extremes for models with constant conditional correlations. J. Empirical Finance 6 , 515--553.
[50] Stărică, C. (2000). Multivariate extremes for models with constant conditional correlations. In Extremes and Integrated Risk Management , ed P. Embrechts, Risk Books, London, pp. 515--553.
[51] Vervaat, W. (1979). On a stochastic difference equation and a representation of non-negative infinitely divisible random variables. Adv. Appl. Prob. 11 , 750--783. · Zbl 0417.60073 · doi:10.2307/1426858
[52] Willinger, W., Taqqu, M. S., Leland, M. and Wilson, D. (1995). Self-similarity in high-speed packet traffic: analysis and modelling of ethernet traffic measurements. Statist. Sci. 10 , 67--85. · Zbl 1148.90310 · doi:10.1214/ss/1177010131
[53] Willinger, W., Taqqu, M. S., Leland, M. and Wilson, D. (1995). Self-similarity through high variability: statistical analysis of ethernet lan traffic at the source level. Comput. Commun. Rev. 25 , 100--113.