×

zbMATH — the first resource for mathematics

Thomas-Fermi and related theories of atoms and molecules. (English) Zbl 1049.81679
Rev. Modern Phys. 53, No. 4, 603-641 (1981); ibid. 54, No. 1, 311 (1982).
Summary: This article is a summary of what is known rigorously about Thomas-Fermi (TF) theory with and without the Dirac and von Weizsäcker corrections. It is also shown that TF theory agrees asymptotically, in a certain sense, with nonrelativistic quantum theory as the nuclear charge z tends to infinity. The von Weizsäcker correction is shown to correct certain undesirable features of TF theory and to yield a theory in much better agreement with what is believed (but as yet unproved) to be the structure of real atoms. Many open problems in the theory are presented.” (This article has appeared elsewhere Rigorous atomic and molecular physics (Erice, 1980), Plenum, New York, 1981.) The erratum contains six minor corrections.

MSC:
81V55 Molecular physics
81V45 Atomic physics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, R. A., in: Sobolev Spaces (1975) · Zbl 0314.46030
[2] Balàzs, N., Phys. Rev. 156 pp 42– (1967)
[3] Baumgartner, B., Commun. Math. Phys. 47 pp 215– (1976)
[4] Baxter, J. R., Ill. J. Math. 24 pp 645– (1980)
[5] Benguria, R., Commun. Math. Phys. (1981)
[6] Benguria, R., Commun. Math. Phys. 79 pp 167– (1981) · Zbl 0478.49035
[7] Benguria, R., Ann. of Phys. (N.Y.) 110 pp 34– (1978)
[8] Benguria, R., Commun. Math. Phys. 63 pp 193– (1978)
[9] Benguria, R., Commun. Math. Phys. 71 pp 94– (1980)
[10] Berestycki, H., in: Bifurcation Phenomena in Mathematical Physics and Related Topics (1980)
[11] Berestycki, H., Arch. Rat. Mech. Anal. (1981)
[12] Brezis, H., in: Contemporary Developments in Continuum Mechanics and Partial Differential Equations (1978)
[13] Brezis, H., in: Variational Inequalities and Complementarity Problems: Theory and Applications (1980)
[14] Brezis, H., Commun. Math. Phys. 65 pp 231– (1979) · Zbl 0416.35066
[15] Brezis, H., Arch. Rat. Mech. Anal. 75 pp 1– (1980) · Zbl 0459.35032
[16] Caffarelli, L. A., J. Diff. Equ. 32 pp 335– (1979) · Zbl 0408.35083
[17] Deift, P., Commun. Math. Phys. 64 pp 1– (1978) · Zbl 0419.35079
[18] Dirac, P. A. M., Proc. Cambridge Philos. Soc. 26 pp 376– (1930) · JFM 56.0751.04
[19] Fermi, E., Rend. Accad. Naz. Lincei 6 pp 602– (1927)
[20] Firsov, O. B., Zh. Eksper. i Teor. Fiz. 32 pp 1464– (1957)
[21] Firsov, O. B., Zh. Eksp. Teor. Fiz. 33 pp 696– (1957)
[22] Firsov, O. B., Zh. Eksp. Teor. Fiz. 34 pp 447– (1958)
[23] Fock, V., Phys. Z. Sowjetunion 1 pp 747– (1932)
[24] Gilbarg, D., in: Elliptic Partial Differential Equations of Second Order (1977) · Zbl 0361.35003
[25] Gombas, P., in: Die statistischen Theorie des Atomes und ihre Anwendungen (1949) · Zbl 0031.37703
[26] Hille, E., Proc. Nat. Acad. Sci. (USA) 62 pp 7– (1969) · Zbl 0179.12903
[27] Hoffmann-Ostenhof, M., in: Springer Lectures Notes in Physics (1980)
[28] Hoffmann-Ostenhof, T., J. Phys. A 13 pp 417– (1980) · Zbl 0432.35080
[29] Jensen, H., Z. Phys. 81 pp 611– (1933)
[30] Kato, T., Commun. Pure Appl. Math. 10 pp 151– (1957) · Zbl 0077.20904
[31] Lieb, E. H., in: Thomas-Fermi and Hartree-Fock theory (1974)
[32] Lieb, E. H., Rev. Mod. Phys. 48 pp 553– (1976)
[33] Lieb, E. H., Stud. in Appl. Math. 57 pp 93– (1977) · Zbl 0369.35022
[34] Lieb, E. H., Phys. Lett. A 70 pp 444– (1979)
[35] Lieb, E. H., Phys. Rev. Lett. 46 pp 457– (1981)
[36] Lieb, E. H., Phys. Rev. Lett. 47 pp 69– (1981)
[37] Lieb, E. H., in: Analysis of the Thomas-Fermi-von Weizsäcker equation for an atom without electron repulsion (1981) · Zbl 0514.35074
[38] Lieb, E. H., Int. J. Quantum Chem. 19 pp 427– (1981)
[39] Lieb, E. H., Adv. in Math. 23 pp 22– (1977) · Zbl 0938.81568
[40] Lieb, E. H., Phys. Rev. Lett. 31 pp 681– (1973)
[41] Lieb, E. H., J. Phys. B 11 pp L537– (1978)
[42] Lieb, E. H., Phys. Rev. Lett. 35 pp 687– (1975)
[43] Lieb, E. H., Phys. Rev. Lett. 35 pp 1116– (1975)
[44] Lieb, E. H., in: Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann (1976) · Zbl 0326.00007
[45] March, N. H., Adv. in Phys. 6 pp 1– (1957)
[46] Mazur, S., Studia Math. 4 pp 70– (1933)
[47] Mazur, S., Studia Math. 4 pp 81–
[48] Morgan, J., III., J. Math. Phys. 19 pp 1658– (1978) · Zbl 0405.34028
[49] Morrey, C. B., Jr., in: Multiple integrals in the calculus of variations (1966) · Zbl 0142.38701
[50] O’Connor, A. J., Commun. Math. Phys. 32 pp 319– (1973)
[51] Reed, M., in: Methods of Modern Mathematical Physics (1978) · Zbl 0401.47001
[52] Ruskai, M. B., Commun. Math. Phys. (1981)
[53] Scott, J. M. C., Philos. Mag. 43 pp 859– (1952)
[54] Sheldon, J. W., Phys. Rev. 99 pp 1291– (1955) · Zbl 0064.45203
[55] Simon, B., J. Func. Anal. 40 pp 66– (1981) · Zbl 0478.47024
[56] Stampacchia, G., in: Equations elliptiques du second ordre a coefficients discontinus (1965)
[57] Teller, E., Rev. Mod. Phys. 34 pp 627– (1962) · Zbl 0111.46107
[58] Thirring, W., Commun. Math. Phys. 79 pp 1– (1981)
[59] Thomas, L. H., Proc. Camb. Philos. Soc. 23 pp 542– (1927) · JFM 53.0868.04
[60] Torrens, I. M., in: Interatomic Potentials (1972)
[61] Veron, L., C. R. Acad. Sci. Paris 288 pp 867– (1979)
[62] Veron, L., J. Non-Lin. Anal.
[63] von Weizsäcker, C. F., Z. Phys. 96 pp 431– (1935)
[64] Yonei, K., Jour. Phys. Soc. Japan 20 pp 1051– (1965)
[65] Yonei, K., Jour. Phys. Soc. Japan 31 pp 882– (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.