Le, Maohua A note on the exponential Diophantine equation \(a^x+b^y=c^z\). (English) Zbl 1050.11040 Proc. Japan Acad., Ser. A 80, No. 4, 21-23 (2004). Let \(a\), \(b\), \(c\) be fixed coprime positive rational integers all \({}>1\). In 1933, Mahler proved that the equation \[ a^x+b^y=c^z,\qquad x, y, z \in \mathbb Z, \] has only finitely manysolutions. The “Terai-Jeśmanowisz” conjecture states that the above equation has at most a solution \((x,y,z)\) with \(\min\{x,y,z\}>1\).In the present paper, the author proves: Theorem. If \(a\), \(b\), \(c\) are positive rational integers with \(b\equiv 3 \pmod 4\), \(a\equiv 1 \pmod {b^{2l}}\), \(a^2+b^{2l-1}=c\) and \(c\) is odd, where \(l\) is a positive integer, then the above equation has only the solution \((2,2l-1,1)\).This improves on a previous result of Terai. The main tool is a deep result of Y. Bilu, G. Hanrot and P. M. Voutier [J. Reine Angew. Math. 539, 75–122 (2001; Zbl 0995.11010)] about the existence of primitive divisors of Lucas sequences. Reviewer: Maurice Mignotte (Strasbourg) Cited in 1 Review MSC: 11D61 Exponential Diophantine equations Keywords:exponential Diophantine equations; primitive divisors of Lucas sequences Citations:Zbl 0995.11010 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Bilu, Y., Hanrot, G., and Voutier, P. M.: Existence of primitive divisors of Lucas and Lehmer numbers. With an appendix by M. Mignotte. J. Reine Angew. Math., 539 , 75-122 (2001). · Zbl 0995.11010 · doi:10.1515/crll.2001.080 [2] Brown, E.: Diophantine equations of the form \(x^2+D=y^n\). J. Reine Angew. Math., 274/275 , 385-389 (1975). · Zbl 0303.10014 · doi:10.1515/crll.1975.274-275.385 [3] Brown, E.: Diophantine equations of the form \(ax^2+Db^2=y^p\). J. Reine Angew. Math., 291 , 118-127 (1977). · Zbl 0338.10018 · doi:10.1515/crll.1977.291.118 [4] Hecke, E.: Vorlesungen uber die Theorie der algebraischen Zahlen. Akademische Verlagsgesellschaft, Leipzig (1923). · JFM 49.0106.10 [5] Hua, L.-K.: Introduction to Number Theory. Springer Verlag, Berlin (1982). [6] Le, M.-H.: Some exponential diophantine equations I. The equation \(D_1x^2-D_2y^2=\lambda k^2\). J. Number Theory, 55 , 209-221 (1995). · Zbl 0852.11015 · doi:10.1006/jnth.1995.1138 [7] Terai, N: On the exponential diophantine equation \(a^x+l^y=c^z\). Proc. Japan Acad., 77A , 151-154 (2001). · Zbl 1009.11026 · doi:10.3792/pjaa.77.151 [8] Voutier, P. M.: Primitive divisors of Lucas and Lehmer sequences. Math. Comp., 64 , 869-888 (1995). · Zbl 0832.11009 · doi:10.2307/2153457 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.