zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Viro theorem and topology of real and complex combinatorial hypersurfaces. (English) Zbl 1050.14056
In this quite long and very well structured article the authors introduce the notion of combinatorial hypersurfaces, which are codimension 2 submanifolds of $\bbfC \bbfP^n$ invariant under complex conjugation whose real parts are codimension 1 submanifolds of $\bbfR \bbfP^n$. This concept appears after removing the convexity condition imposed by Viro to the lattice subdivisions of the Newton polytope, to construct real algebraic varieties with prescribed topology [see e.g. {\it O. Ya. Viro}, Russ. Math. Surv. 41, No. 3, 55--82 (1986; Zbl 0619.14015)]. The authors show that combinatorial hypersurfaces obey almost all known topological restrictions satisfied by real algebraic surfaces; among them let us quote that they satisfy the generalized Harnack inequality, the Gudkov-Rokhlin and the Gudkov-Krahnov-Kharlamov congruences, some kind of Comessati inequalities for combinatorial hypersurfaces in $\bbfC \bbfP^3$, and that those of degree $d$ in $\bbfC \bbfP^3$ are homeomorphic to nonsingular algebraic surfaces in $\bbfC \bbfP^3$ of the same degree. The paper can be viewed as the first step trying to answer the following questions: (i) How far are are combinatorial hypersurfaces from the algebraic ones? (ii) What are the main differences between the combinatorial hypersurfaces and the notion of flexible curve introduced by {\it O. Ya. Viro} [in: Topology, general and algebraic topology, and applications. Proc. Int. Conf.,Leningrad 1982, Lect. Notes Math. 1060, 187--200 (1984; Zbl 0576.14031)]? It must be pointed out that, as the authors recognize, the notion of combinatorial hypersurface was firstly introduced, with an slightly different language, in the pioneer work of {\it F. Santos} [“Improved counterexamples to the Ragsdale conjecture”, Univ. de Cantabria, Spain, Preprint 1994].

14P25Topology of real algebraic varieties
14J70Algebraic hypersurfaces
32C18Topology of analytic spaces
Full Text: DOI arXiv
[1] M. F. Atiyah,Convexity and commuting Hamiltonians, The Bulletin of the London Mathematical Society14 (1982), 1--15. · Zbl 0482.58013 · doi:10.1112/blms/14.1.1
[2] M. F. Atiyah,Angular momentum, convex polyhedra and algebraic geometry, Proceedings of the Edinburgh Mathematical Society26 (1983), 121--138. · Zbl 0521.58026 · doi:10.1017/S0013091500016837
[3] M. F. Atiyah and I. M. Singer,The index of elliptic operators: III, Annals of Mathematics87 (1968), 546--604. · Zbl 0164.24301 · doi:10.2307/1970717
[4] G. E. Bredon,Introduction to Compact Transformation Groups (Pure and Applied Mathematics46), Academic Press, New York, 1972. · Zbl 0246.57017
[5] R. Connelly and D. W. Henderson,A convex 3-complex not simplicially isomorphic to a strictly convex complex, Proceedings of the Cambridge Philosophical Society88 (1980), 299--306. · Zbl 0449.52004 · doi:10.1017/S0305004100057595
[6] V. I. Danilov and A. G. Khovanskii,Newton polyhedra and an algorithm for computing Hodge-Deligne numbers, Izvestiya Akademii Nauk SSSR50 (1986), (Russian); English transl.: Mathematics of the USSR Izvestiya29:2 (1987), 279--298.
[7] A. Degtyarev and V. Kharlamov,Topological properties of real algebraic varieties: Rokhlin’s way, Uspekhi Matematicheskikh Nauk55 (2000), no. 4(334), 129--212 (Russian). · Zbl 1014.14030
[8] J. A. de Loera and F. J. Wicklin,On the need of convexity in patchworking, Advances in Applied Mathematics20 (1998), 188--219. · Zbl 0932.14032 · doi:10.1006/aama.1997.0571
[9] I. Fary,Cohomologie des variétés algébriques, Annals of Mathematics65 (1957), 21--73. · Zbl 0082.36504 · doi:10.2307/1969665
[10] S. Fiedler-Le Touzé and S. Yu. Orevkov,A flexible affine M-sextic non-realizable algebraically, Journal of Algebraic Geometry11 (2002), 293--310. · Zbl 1054.14071
[11] M. H. Freedman and F. Quinn,Topology of 4-manifolds (Princeton Mathematical Series39), Princeton University press, Princeton, NJ, 1990. · Zbl 0705.57001
[12] W. Fulton,Introduction to Toric Varieties (Annals of Mathematics Studies131), Princeton University Press, Princeton, NJ, 1993. · Zbl 0813.14039
[13] I. M. Gelfand, M. M. Kapranov and A. V. Zelevinski,Discriminants Resultants and Multidimensional Determinants, Birkhäuser, Boston 1994. · Zbl 0827.14036
[14] M. Gromov,Pseudo-holomorphic curves in sympletic manifolds, Inventiones Mathematicae82 (1985), 307--347. · Zbl 0592.53025 · doi:10.1007/BF01388806
[15] D. A. Gudkov,Topology of real projective algebraic varieties, Russian Mathematical Surveys29 (1974), 3--79. · Zbl 0316.14018 · doi:10.1070/RM1974v029n04ABEH001288
[16] B. Haas,The Ragsdale conjecture for maximal T-curves, Preprint, Universität Basel, 1997.
[17] F. Hirzebruch,The signature of ramified coverings, inGlobal Analysis (Papers in honor of K. Kodaira), University of Tokyo Press, Tokyo, 1969, pp. 253--265.
[18] F. Hirzebruch,The signature theorem: reminiscences and recreation, inProspects in Mathematics (Annals of Mathematics Studies,70), Princeton University Press, Princeton, 1971, pp. 3--31. · Zbl 0252.58009
[19] I. Itenberg,Counterexamples to Ragsdale conjecture and T-curves, inContemporary, Mathematics 182 (Proc. Conf. Real Alg. Geom., December 17--21, 1993, Michigan, ed.S. Akbulut), AMS, Providence, RI, 1995, pp. 55--72.
[20] I. Itenberg and E. Shustin,Combinatorial patchworking of real pseudo-holomorphic curves. Turkish Journal of Mathematics26 (2002), 27--51. · Zbl 1047.14047
[21] I. Itenberg and O. Viro,Patchworking algebraic curves disproves the Ragsdale conjecture, The Mathematical Intelligencer18 (1996), 19--28. · Zbl 0876.14017 · doi:10.1007/BF03026748
[22] V. Kharlamov,New congruences for the Euler characteristic of real algebraic manifolds, Functional Analysis and its Applications7 (1973), 147--150. · Zbl 0314.14005 · doi:10.1007/BF01078887
[23] V. Kharlamov,Additional conruences for the Euler characteristic of even-dimensional real algebraic manifolds, Functional Analysis and its Applications9 (1975), 134--141. · Zbl 0346.14022 · doi:10.1007/BF01075451
[24] S. Yu. Orevkov,Link theory and oval arragements of real algebraic curves, Topology38 (1999), 779--810. · Zbl 0923.14032 · doi:10.1016/S0040-9383(98)00021-4
[25] S. Yu. Orevkov and E. Shustin,Flexible, algebraically unrealizable curves: Rehabilitation of Hilbert-Rohn-Gudkov approach, Journal für die reine und angewandte Mathematik (2002), to appear. · Zbl 1014.14028
[26] P. Parenti,Combinatorics of dividing T-curves, Ph.D. Thesis, Università di Pisa, 1999.
[27] J.-J. Risler,Construction d’hypersurfaces réelles [d’après Viro],Séminaire N. Bourbaki, no. 763, Vol. 1992--93, Novembre 1992.
[28] V. A. Rokhlin,Congruences modulo 16 in Hilbert’s 16th, problem, Functional Analysis and its Applications6 (1972), 301--306. · Zbl 0295.14008 · doi:10.1007/BF01077649
[29] V. A. Rokhlin,Complex topological characteristics of real algebraic curves, Russian Mathematical Surveys33 (1978), 85--98. · Zbl 0444.14018 · doi:10.1070/RM1978v033n05ABEH002514
[30] F. Santos,Improved counterexamples to the Ragsdale conjecture, Preprint, Universidad de Cantabria, 1994.
[31] E. Shustin,Topology of real plane algebraic curves, inProc. Intern. Conf. Real Algebraic Geometry, Rennes, June 24--29 1991, Lecture Notes in Mathematics1524, Springer, Berlin, 1992, pp. 97--109.
[32] O. Ya. Viro,Gluing of algebraic hypersurfaces, smoothing of singularities and construction of curves, inProc. Leningrad Int. Topological Conf., Leningrad, Aug. 1982, Nauka, Leningrad, 1983, pp. 149--197 (Russian).
[33] O. Ya. Viro,Gluing of plane real algebraic curves and construction of curves of degrees 6 and 7, Lecture Notes in Mathematics1060, Springer, Berlin, 1984, pp. 187--200.
[34] O. Ya. Viro,Real plane curves of degrees 7 and 8: new prohibitions, Mathematics of the USSR Izvestia23 (1984), 409--422. · Zbl 0552.14014 · doi:10.1070/IM1984v023n02ABEH001777
[35] O. Ya. Viro,Progress in the topology of real algebrraic varieties over the last six years, Russian Mathematical Surveys41 (1986), 55--82. · Zbl 0619.14015 · doi:10.1070/RM1986v041n03ABEH003317
[36] O. Ya. Viro,Real algebraic plane curves: constructions with controlled topology, Leningrad Mathematical Journal1 (1990), 1059--1134. · Zbl 0732.14026
[37] O. Ya. Viro,Mutual position of hypersurfaces in projective space, inGeometry of Differential Equations (American Mathematical Society Transl., Ser. 2,186), American Mathematical Society, Providence, RI, 1998, pp. 161--176.
[38] O. Ya. Viro,Patchworking real algebraic varieties. Available at http://www.math.uu.se/leg/pw.ps.
[39] J.-Y. Welschinger, Courbes algébriques rèelles et courbes flexibles sur les surfaces réglées de base $\mathbb{C}$P 1, Proceedings of the London Mathematical Society, (3)85 (2002), 367--392. · Zbl 1016.14019 · doi:10.1112/S0024611502013606
[40] G. Wilson,Hilbert’s sixteenth problem, Topology17 (1978), 53--73. · Zbl 0394.57001 · doi:10.1016/0040-9383(78)90012-5
[41] G. Ziegler,Lectures of Polytopes (Graduate Texts in Mathematics152), Springer-Verlag, Berlin, 1995.